Skip to main content

Advertisement

Log in

Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, we present alumina (Al2O3) nanocomposites reinforced with various graphene nanoplatelets (GNPs) concentrations (0.75 and 1.25 wt.%) and fabricated by rapid high frequency-induction heat (HF-IH) sintering route. The influence of the GNP on the microstructures, mechanical properties, and interfacial connections of the resulting nanocomposites were thoroughly investigated. GNPs were synthesized using combined chemical oxidation and thermal exfoliation processes and dispersed homogenously into base Al2O3 ceramic matrix using colloidal chemistry technique. Pressure-assisted HF-IH sintering rapidly consolidated nanocomposites close to theoretical densities (~99%) without damaging the GNP intrinsic nanostructures and electron microscopy revealed firmly bonding of the nanocomposite constituents at interfaces. Nanocomposite samples containing 0.75 wt.% GNP demonstrated 60% finer microstructure with 45% higher fracture toughness (K IC) and 9% improvement in hardness against benchmarked monolithic Al2O3. However, nanocomposites loaded with higher GNP contents (1.25 wt.%) showed deprived properties due to GNP accumulations. Homogenous dispersions and two-dimensional features allowed GNP to interact wide area of the matrix grains thus refined the microstructure and gave rise the grain anchoring mechanism thereby led nanocomposite to superior mechanical properties following GNP crack-bridging and pull-out toughening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, 306, p 666–669

    Article  Google Scholar 

  2. S. Bai and X. Shen, Graphene-Inorganic Nanocomposites, RSC Adv., 2012, 2, p 64–98

    Article  Google Scholar 

  3. H. Shifeng and C. Xin, Effect of Carbon Black on Properties of 0-3 Piezoelectric Ceramics/Cement Composites, Curr. Appl. Phys., 2009, 9, p 1191–1194

    Article  Google Scholar 

  4. K. Niihara, New Design Concept of Structural Ceramics-Ceramics Nanocomposites, J. Ceram. Soc. Jpn., 1999, 99, p 974–982

    Article  Google Scholar 

  5. A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, and A. Zurutuza, Graphene for Tough and Electroconductive Alumina Ceramics, J. Eur. Ceram. Soc., 2013, 33, p 3201–3210

    Article  Google Scholar 

  6. Y. Wu, X. Zhang, and J. Guo, Microstructural Development and Mechanical Properties of Self-Reinforced Alumina with CAS Addition, J. Eur. Ceram. Soc., 2001, 2, p 581–587

    Article  Google Scholar 

  7. G. Evans, Perspective on the Development of High-Toughness Ceramics, J. Am. Ceram. Soc., 1990, 73, p 187–206

    Article  Google Scholar 

  8. J.R. Martinlli and F.F. Sene, Electrical Resistivity of Ceramic-Metal Composite Materials: Application in Crucibles for Induction Furnaces, Ceram. Int., 2000, 26, p 325–335

    Article  Google Scholar 

  9. L. Osayande and I. Okoli, Fracture Toughness Enhancement for Alumina System: A Review, Int. J. Appl. Ceram. Technol., 2008, 5, p 313–323

    Article  Google Scholar 

  10. J. Llorca, M. Elices, and J.A. Celemin, Toughness and Microstructural Degradation at High Temperature in SiC Fiber-Reinforced Ceramics, Acta Mater., 1998, 46, p 2441–2453

    Article  Google Scholar 

  11. F. Yongqing, Y.W. Gu, and D. Hejun, SiC Whisker Toughened Al2O3-(Ti, W)C Ceramic Matrix Composites, Scr. Mater., 2001, 44, p 111–116

    Article  Google Scholar 

  12. D.E. Garcıa, S. Schicker, J. Bruhn, R. Janssen, and N. Claussen, Processing and Mechanical Properties of Pressureless-Sintered Niobium-Alumina-Matrix Composites, J. Am. Ceram. Soc., 1998, 81, p 429–432

    Article  Google Scholar 

  13. N. Padture, Multifunctional Composites of Ceramics and Single-Walled Carbon Nanotubes, Adv. Mater., 2009, 21, p 1767–1770

    Article  Google Scholar 

  14. Tougher. Peigney, Ceramics with Nanotubes, Nat. Mater., 2003, 2, p 15–16

    Article  Google Scholar 

  15. J. Fan, D. Zhao, and J. Song, Preparation and Microstructure of Multi-walled Carbon Nanotubes Toughened Al2O3 Composite, J. Am. Ceram. Soc., 2006, 89, p 750–753

    Article  Google Scholar 

  16. C. Laurent, A. Peigney, and A. Rousset, Carbon Nanotubes-Fe-Alumina Nanocomposites: Part II: Microstructure and Mechanical Properties of the Hot-Pressed Composites, J. Eur. Ceram. Soc., 1998, 18, p 2005–2013

    Article  Google Scholar 

  17. G. Zhan, J. Kuntz, J. Wan, and K. Mukherjee, Single-Walled Carbon Nanotubes as Attractive Toughing Agent in Alumina Based Nanocomposites, Nat. Mater., 2003, 2, p 38–42

    Article  Google Scholar 

  18. S. Sarkar and P.K. Das, Microstructure and Physicomechanical Properties of Pressure-Less Sintered Multi-walled Carbon Nanotube/Alumina Nanocomposites, Ceram. Int., 2012, 38, p 423–432

    Article  Google Scholar 

  19. I. Ahmad, A. Kennedy, and Y.Q. Zhu, Carbon Nanotubes Reinforced Alumina Nanocomposites: Mechanical Properties and Interfacial Investigations, J. Compos. Sci. Technol., 2010, 70, p 1199–1206

    Article  Google Scholar 

  20. F. Inam, T. Pijis, and M.J. Reece, The Production of Advanced Fine-Grained Alumina by Carbon Nanotubes Addition, J. Eur. Ceram. Soc., 2011, 31, p 2853–2859

    Article  Google Scholar 

  21. I. Ahmad, H. Cao, H. Chen, H. Zhao, A. Kennedy, and Y.Q. Zhu, Carbon Nanotube Toughened Aluminium Oxide Nanocomposites, J. Eur. Ceram. Soc., 2009, 30, p 865–873

    Article  Google Scholar 

  22. I. Ahmad, A. Kennedy, and Y.Q. Zhu, Wear Resistance Properties of Multi-walled Carbon Nanotubes Reinforced Al2O3 Nanocomposite, Wear, 2010, 26, p 971–978

    Google Scholar 

  23. Y.C. Fan, L.J. Wang, J.L. Li, J.Q. Li, S.K. Sun, F. Chen, L.D. Chen, and W. Jiang, Preparation and Electrical Properties of Graphene Nanosheet/ Al2O3 Composites, Carbon, 2010, 48, p 1743–1749

    Article  Google Scholar 

  24. T. He, J.L. Li, L.J. Wang, J.J. Zhu, and W. Jiang, Preparation and Consolidation of Alumina/Graphene Composite Powders, Mater. Trans., 2009, 50, p 749–751

  25. C.W. Lam, J.T. James, R. McCluskey, S. Arepalli, and R.L. Hunter, A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks, Crit. Rev. Toxicol., 2006, 36, p 189–217

    Article  Google Scholar 

  26. L.S. Walker and E.L. Corral, Toughness in Grapheme Ceramic Composites, ACS Nano, 2011, 4, p 3182–3190

    Article  Google Scholar 

  27. J. Dusza and C. Balaszi, Microstructure and Farcture Toughness of Si3N4 + GNP Platelet Composites, J. Eur. Ceram. Soc., 2012, 32, p 3389–3397

    Article  Google Scholar 

  28. K. Wang and T. Wei, Preperation of Graphene Nanosheets/Alumina Composites by Spark Plasma Sintering, Mater. Res. Bull., 2011, 46, p 315–318

    Article  Google Scholar 

  29. L. Jain and H.K. Jiang, Mechanical Properties of Graphene Platelets-Reinforced Alumina Ceramics Composites, Ceram. Int., 2013, 39, p 6215–6221

    Article  Google Scholar 

  30. H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhy, and M.J. Reece, Graphene Reinforced Alumina Nano-Composites, Carbon, 2013, 64, p 359–369

    Article  Google Scholar 

  31. H. Porwal, S. Grasso, and M.J. Reece, Review of Graphene-Ceramic Matrix Composites, Adv. Appl. Ceram., 2013, 112, p 443–454

    Article  Google Scholar 

  32. W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. , 1958, 80, p 1339

    Article  Google Scholar 

  33. S. Pei and H. Cheng, The Reduction of Graphene Oxide, Carbon, 2012, 50, p 3210–3228

    Article  Google Scholar 

  34. I. Ahmad, M. Islam, A.A. Almajid, B. Yazdani, and Y.Q. Zhu, Investigation of Yttria-Doped Al2O3 Nanocomposites Reinforced by Multi-walled Carbon Nanotubes, Ceram. Int., 2014, 40, p 9327–9335

    Article  Google Scholar 

  35. A. Chorfa, M.A. Madjoubi, M. Amidouche, N. Bouras, J. Rubio, and F. Rubiom, Glass Hardness and Elastic Modulus Determination by Nanoindentation Using Displacement and Energy Methods, Ceram. Silik., 2010, 54, p 225–234

    Google Scholar 

  36. G.R. Anstis, P. Chantikul, and D.B. Marshal, A Critical Evaluation of Indentation Technique for Measuring Fracture Toughness: I. Direct Crack Method, J. Am. Ceram. Soc., 1981, 64, p 533–538

    Article  Google Scholar 

  37. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prudhomme, R. Car, D.A. Saville, and I.A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B, 2006, 11, p 8535–8539

    Article  Google Scholar 

  38. H.C. Kim, D.Y. Oh, and I.J. Shon, Sintering of Nanophase WC-15 vol.% Co Hard Metals by Rapid Sintering Process, Int. J. Refract. Hard Mater., 2004, 22, p 197–203

    Article  Google Scholar 

  39. S.W. Kim and K.A. Khalil, High-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina–Yttria-Stabilized Zirconia Nano-bioceramics, J. Am. Ceram. Soc., 2006, 89, p 1280–1285

    Article  Google Scholar 

  40. B. Yazdani, Y. Xi, I. Ahmad, and Y.Q. Zhu, Graphene and Carbon Nanotube (GNT)-Reinforced Alumina Nanocomposites, J. Eur. Ceram. Soc., 2015, 35, p 179–186

    Article  Google Scholar 

  41. I. Ahmad, M. Islam, F. Xu, S.I. Shah, and Y.Q. Zhu, Magnesia Tuned Multi-walled Carbon Nanotubes-Reinforced Alumina Nanocomposites, Mater. Character., 2015, 99, p 210–219

    Article  Google Scholar 

  42. Y. Fan, M. Estili, G. Igarashi, and A. Kawasakia, The Effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nanocomposites, J. Eur. Ceram. Soc., 2014, 34(2), p 443–451

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-VPP-283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Islam, M., Subhani, T. et al. Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route. J. of Materi Eng and Perform 24, 4236–4243 (2015). https://doi.org/10.1007/s11665-015-1738-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1738-0

Keywords

Navigation