Skip to main content
Log in

Corrosion Behavior of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys in NaCl Aqueous Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion behavior of two multiphase Mg-Li-Al-based alloys in 0.6 M NaCl aqueous solution is investigated by hydrogen gas evolution measurement and electrochemical test. This paper reports, for the first time, the comparison of hydrogen evolution and Tafel extrapolation results of Mg-Li-Al-based alloys. The corrosion rate of Mg-9Li-7Al-1Sn is observed to be reasonably higher when compared to that of Mg-9Li-5Al-3Sn-1Zn, and both the alloys have shown higher corrosion rate than that of Mg-3Al-1Zn alloy (AZ31B). The micro-galvanic corrosion of primary precipitates and hcp α-phase (Mg-rich) is not as severe as was observed in case of the secondary precipitates and bcc β-phase (Li-rich). Corrosion mechanism of multiphase Mg-Li-Al-based alloys in chloride solution, which has not been adequately reported in the literature, is lucidly articulated based on the early stages of corrosion, film morphology, and in situ hydrogen bubble study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.A. Counts, M. Friák, D. Raabe, and J. Neugebauer, Using Ab Initio Calculations in Designing bcc Mg–Li Alloys for Ultra-Lightweight Applications, Acta Mater., 2009, 57, p 69–76

    Article  Google Scholar 

  2. O. Sivakesavam and Y.V.R.K. Prasad, Characteristics of Superplasticity Domain in the Processing Map for Hot Working of As-cast Mg–11.5 Li–1.5 Al Alloy, Mater. Sci. Eng., A, 2002, 323, p 270–277

    Article  Google Scholar 

  3. X. Liu, G. Du, R. Wu, Z. Niu, and M. Zhang, Deformation and Microstructure Evolution of a High Strain Rate Superplastic Mg–Li–Zn Alloy, J. Alloy. Compd., 2011, 509, p 9558–9561

    Article  Google Scholar 

  4. Z. Drozd, Z. Trojanová, and S. Kúdela, Deformation Behavior of Mg–Li–Al Alloys, J. Alloy. Compd., 2004, 378, p 192–195

    Article  Google Scholar 

  5. X. Meng, R. Wu, M. Zhang, L. Wu, and C. Cui, Microstructures and Properties of Superlight Mg–Li–Al–Zn Wrought Alloys, J. Alloy. Compd., 2009, 486, p 722–725

    Article  Google Scholar 

  6. L. Yang, J. Li, X. Yu, M. Zhang, and X. Huang, Lanthanum-Based Conversion Coating on Mg–8Li Alloy, Appl. Surf. Sci., 2008, 255, p 2338–2341

    Article  Google Scholar 

  7. Y. Ma, N. Li, D. Li, M. Zhang, and X. Huang, Characteristics and Corrosion Studies of Vanadate Conversion Coating Formed on Mg–14 wt% Li–1 wt% Al–0.1 wt% Ce Alloy, Appl. Surf. Sci., 2012, 261, p 59–67

    Article  Google Scholar 

  8. G. Wang, M. Zhang, and R. Wu, Molybdate and Molybdate/Permanganate Conversion Coatings on Mg–8.5 Li Alloy, Appl. Surf. Sci., 2012, 258, p 2648–2654

    Article  Google Scholar 

  9. P.C. Wang, T.C. Cheng, H.C. Lin, M.J. Chen, K.M. Lin, and M.T. Yeh, Effects of Pre-sputtered Al Interlayer on the Atomic Layer Deposition of Al2O3 Films on Mg–10Li–0.5Zn Alloy, Appl. Surf. Sci., 2013, 270, p 452–456

    Article  Google Scholar 

  10. Y. Song, D. Shan, R. Chen, and E.-H. Han, Corrosion Characterization of Mg–8Li Alloy in NaCl Solution, Corros. Sci., 2009, 51, p 1087–1094

    Article  Google Scholar 

  11. G. Song and A. Atrens, Understanding Magnesium Corrosion, Adv. Eng. Mater., 2003, 5, p 837–858

    Article  Google Scholar 

  12. R.W. Revie, Uhlig’s Corrosion Handbook, 2nd ed., Wiley, New York, 2000

    Google Scholar 

  13. V. Kumar, R. Shekhar, R. Balasubramaniam, and K. Balani, Microstructure Evolution and Texture Development in Thermomechanically Processed Mg–Li–Al Based Alloys, Mater. Sci. Eng., A, 2012, 547, p 38–50

    Article  Google Scholar 

  14. V. Kumar, Ph.D. Thesis, Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 2012

  15. V. Kumar, R. Balasubramaniam, R. Shekhar, and K. Balani, Microstructure and Texture Evolution During Hot Rolling of Mg-9Li-7Al-1Sn Alloy for Aerospace Application, Mater. Sci. Forum, 2012, 702–703, p 85–88

    Google Scholar 

  16. Z. Shi, M. Liu, and A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation, Corros. Sci., 2010, 52, p 579–588

    Article  Google Scholar 

  17. R.G. Kelly, J.R. Scully, D.W. Shoesmith, and R.G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, 1st ed., Marcel Dekkar Inc., New York, 1999

    Google Scholar 

  18. N.T. Kirkland, G. Williams, and N. Birbilis, Response to Comments from Shi and Atrens on the Paper “Observations of the Galvanostatic Dissolution of Pure Magnesium”, Corros. Sci., 2013, 77, p 407–409

    Article  Google Scholar 

  19. G. Williams, N. Birbilis, and H.N. McMurray, The Source of Hydrogen Evolved from a Magnesium Anode, Electrochem. Commun., 2013, 36, p 1–5

    Article  Google Scholar 

  20. G. Song, A. Atrens, D. John, X. Wu, and J. Nairn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39, p 1981–2004

    Article  Google Scholar 

  21. X. Liu, D. Shan, Y. Song, R. Chen, and E. Han, Influences of the Quantity of Mg2Sn Phase on the Corrosion Behavior of Mg–7Sn Magnesium Alloy, Electrochim. Acta, 2011, 56, p 2582–2590

    Article  Google Scholar 

  22. H.-Y. Ha, J.-Y. Kang, S.G. Kim, B. Kim, S.S. Park, C.D. Yim, and B.S. You, Influences of Metallurgical Factors on the Corrosion Behaviour of Extruded Binary Mg–Sn Alloys, Corros. Sci., 2014, 82, p 369–379

    Article  Google Scholar 

  23. A. Froats, T.K. Aune, D. Hawke, W. Unsworth, and G. Hillis, Corrosion of Magnesium and Magnesium Alloys, Metal Handbook, 9th ed., L.J. Korb, and D.L. Olson, Ed., ASM International, Materials Park, OH, 1987

    Google Scholar 

  24. E. Ghali, Corrosion Resistance of Aluminum and Magnesium Alloys—Understanding, Performance and Testing, Wiley, Hoboken, NJ, 2010

    Book  Google Scholar 

  25. H. Godard, W.B. Jepson, M.R. Bothwell, and R.L. Kane, The Corrosion of Light Metals, Wiley, New York, 1967

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge funding from IITK-ISRO cell Project No. MET /ISRO 20090011. VK thanks one of his Ph.D. supervisors Late Prof. R. Balasubramanaim (Professor, Department of Materials Science and Engineering at IIT Kanpur, India) for his help and guidance during the early design of the experiments. The authors would like to thank Mr. Govind (Scientist, ISRO; Trivanrdum, India) for his help during sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Shekhar, R. & Balani, K. Corrosion Behavior of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys in NaCl Aqueous Solution. J. of Materi Eng and Perform 24, 4060–4070 (2015). https://doi.org/10.1007/s11665-015-1687-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1687-7

Keywords

Navigation