Skip to main content
Log in

Characterization of the Corrosion Layer on Pipeline Steel in Sweet Environment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

CO2 corrosion, or ‘sweet corrosion,’ is the most prevalent form of attack encountered in oil and gas pipelines. Corrosion of carbon steel in CO2-containing environment is very complex and requires extensive attention. Various mechanisms have been proposed to explain the phenomenon. However, these mechanisms either apply to very specific conditions or have not received widespread recognition or acceptance. To establish a fundamental understanding of CO2 attacks on steel, it is essential to conduct further studies to investigate the formation, composition, microstructure, and characteristics of the surface film induced by carbon dioxide corrosion. In this study, corrosion behavior of API pipeline steel has been assessed in 2 g/l NaCl solution purged with CO2 as the corrosive media. Specimens were immersed in the corrosive solution (open system) for 15, 45, 100, and 185 h. In this study, scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were employed systematically to characterize the composition, microstructure, and formation of the surface film on API X42 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G.X. Zhao, X. Hong, J.M. Xiang, and Y. Han, Formation Characteristic of CO2 Corrosion Product Layer of P110 Steel Investigated by SEM and Electrochemical Techniques, J. Iron. Steel Res. Int., 2009, 16, p 89

    Article  Google Scholar 

  2. E. Sadeghi Meresht, T. Shahrabi Farahani, and J. Neshati, 2-Butyne-1, 4-Diol as a Novel Corrosion Inhibitor for API, X65 Steel Pipeline in Carbonate/Bicarbonate Solution, Corros. Sci., 2012, 54, p 36

    Article  Google Scholar 

  3. D.G. Li, Y.R. Feng, Z.Q. Bai, and M.S. Zheng, Characteristics of CO2 Corrosion Scale Formed on N80 Steel in Stratum Water with Saturated CO2, Appl. Surf. Sci., 2007, 253, p 8371

    Article  Google Scholar 

  4. B. Wang, M. Du, J. Zhang, and C.J. Gao, Electrochemical and Surface Analysis Studies on Corrosion Inhibition of Q235 Steel by Imidazoline Derivative Against CO2 Corrosion, Corros. Sci., 2011, 53, p 353

    Article  Google Scholar 

  5. S. Guo, L. Xu, L. Zhang, W. Chang, and M. Lu, Corrosion of Alloy Steels Containing 2% Chromium in CO2 Environments, Corros. Sci., 2012, 63, p 246

    Article  Google Scholar 

  6. F.E. Faysal, E.S. Mahdi, and A. Akram, Electrochemical Evaluation of the Corrosion Behaviour of API-X100 Pipeline Steel in Aerated Bicarbonate Solutions, Corros. Sci., 2012, 58, p 181

    Article  Google Scholar 

  7. Y. Xie, L. Xu, C. Gao, W. Chang, and M. Lu, Corrosion Behavior of Novel 3%Cr Pipeline steel in CO2 Top-of-Line Corrosion Environment, Mater. Des., 2012, 36, p 54–57

    Article  Google Scholar 

  8. G.A. Zhang and Y.F. Cheng, Electrochemical Corrosion of X65 Pipe Steel in Oil/Water Emulsion, Corros. Sci., 2009, 51, p 901

    Article  Google Scholar 

  9. E. Dayalan, G. Vani, J.R. Shadley, S.A. Shirazi, and E.F. Rybicki, Modelling CO2 Corrosion of Carbon Steel in Pipe Flow, NACE Corrosion, Houston, Texas, 1995, Paper no. 118

  10. M. Heydari and M. Javidi, Corrosion Inhibition and Adsorption Behaviour of an Amido-imidazoline Derivative on API, 5L X52 Steel in CO2-Saturated Solution and Synergistic Effect of Iodide Ions, Corros. Sci., 2012, 61, p 148

    Article  Google Scholar 

  11. D.R. Lide, Ed., Handbook of Chemistry and Physics, 79th ed., CRS Press, Boca Raton, 1998

    Google Scholar 

  12. M. Ueda and H. Takabe, Effect of Environmental Factor and Microstructure on Morphology of Corrosion Products in CO2 Environments, CORROSION’99, NACE International, Houston, TX, 1999, Paper no. 13

  13. A. Dugstad, L. Lunde, and K. Videm, Parametric Study of CO2 Corrosion of Carbon Steel, CORROSION 94, NACE International, Houston, TX, 1994, Paper no 14

  14. Y. Sun and S. Nesic, A Parametric Study and Modelling on Localized CO2 Corrosion in Horizontal Wet Gas Flow, Corrosion 04, NACE International, Houston, TX, 2004, Paper no. 380

  15. E.W.J. van Hunnik, B.F.M. Pots, and E.L.J.A. Hendriksen, The Formation of Protective FeCO3 Corrosion Product Layers in CO2 Corrosion, CORROSION 96, NACE International, Houston, TX, 1996, Paper no. 6

  16. F.D. de Moraes, S.A. Petrobras, J.R. Shadley, J. Chen, and E.F. Rybicki, Characterization of CO2 Corrosion Product Scales Related to Environmental Conditions, CORROSION 00, NACE International, Houston, TX, 2000, Paper no. 30

  17. S. Nesic and L. Lunde, Carbon Dioxide Corrosion of Carbon Steel in Two-Phase Flow, Corrosion, 1994, 50, p 717

    Article  Google Scholar 

  18. K. Videm, The Influence of Composition of Carbon Steels on Anodic and Cathodic Reaction Rate in CO2 Corrosion, NACE International, Corrosion, Houston, TX, 1998, Paper no 30

  19. K. Videm and A. Dugstad, Corrosion of Carbon Steel in an Aqueous Carbon Dioxide Environment. Part I: Solute Effects, Mater. Perform., 1989, 28, p 63

    Google Scholar 

  20. K. Videm and A. Dugstad, Corrosion of Carbon Steel in an Aqueous Carbon Dioxide Environment. Part II: Film formation, Mater. Perform., 1989, 28, p 46

    Google Scholar 

  21. B. Mishra, S. Al-Hasan, D.L. Olson, and M.M. Salama, Development of a Predictive Model for Activation-Controlled Corrosion of Steel in Solutions Containing Carbon Dioxide, Corrosion, 1997, 53, p 852

    Article  Google Scholar 

  22. C. Waard and D.E. Milliams, Carbonic Acid Corrosion of Steel, Corrosion, 1975, 31, p 177

    Article  Google Scholar 

  23. C. Waard and D.E. Milliams, Predictive Model for CO2 Corrosion Engineering in Wet Natural Gas Pipelines, Corrosion, 1991, 47, p 976

    Article  Google Scholar 

  24. S. Nesic, J. Postlethwaite, and S. Olsen, An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions, Corrosion, 1996, 52, p 280

    Article  Google Scholar 

  25. A. Neville, X. Hu, and I.M. Ismail, Investigation of Pitting Corrosion and Inhibition in Sweet Conditions, NACE Corrosion, Orlando, Florida, 2013, Paper no 2361

  26. U. Lotz and T. Sydberger, CO2 Corrosion of Carbon Steel and 13Cr Steel in Particle-Laden Fluid, Corrosion, 1998, 44, p 800

    Article  Google Scholar 

  27. F.J.C. Cardoso and M.E. Orazem, Application of a Submerged Impinging Jet to Investigate the Influence of Temperature, Dissolved CO2, and Fluid Velocity on Corrosion of Pipeline Grade Steel in Brine, NACE Corrosion, Houston, TX, 2001, Paper no 01058

  28. J.K. Heuer and J.F. Stubbins, An XPS Characterization of FeCO3 Films from CO2 Corrosion, Corros. Sci., 1999, 41, p 1231

    Article  Google Scholar 

  29. E. Gulbrandsen, J. Kvarekval, and H. Miland, Effect of Oxygen Contamination on the Inhibition of CO2 Corrosion, NACE Corrosion, Houston, TX, 2001, Paper no 01054

  30. R.E. Reed-Hill, Physical Metallurgy Principles, 2nd ed., Litton Educational Publishing International, Mexico, 1979

    Google Scholar 

  31. C.A. Palacios and J.R. Shadley, Characteristics of Corrosion Scales on Steels in a CO2-Saturated NaCl Brine, Corrosion, 1991, 47, p 122

    Article  Google Scholar 

  32. J.L. Crolet, N. Thevenot, and S. Nesic, Role of Conductive Corrosion Products in the Protectiveness of Corrosion Layers, Corrosion, 1998, 54, p 194

    Article  Google Scholar 

  33. A. Dugstad, H. Hemmer, and M. Seiersten, Effect of Steel Microstructure on Corrosion Rate and Protective Iron Carbonate Film Formation, Corrosion, 2001, 57, p 369

    Article  Google Scholar 

  34. R. Jasinski, Corrosion of N80-Type Steel by CO2/Water Mixtures, Corrosion, 1987, 43, p 214

    Article  Google Scholar 

  35. A.K. Pilkey, S.B. Lambert, and A. Plumtree, Stress Corrosion Cracking of X-60 Line Pipe Steel in a Carbonate-Bicarbonate Solution, Corros. Sci., 1995, 51, p 91

    Article  Google Scholar 

  36. C.A. Palacios and J.R. Shadley, CO2 Corrosion of N-80 Steel at 71 C in a Two-Phase Flow System, Corrosion, 1993, 49, p 686

    Article  Google Scholar 

  37. G.X. Zhao, X. Hong, J.M. Xiang, and Y. Han, Formation Characteristic of CO2 Corrosion Product Layer of P110 Steel Investigated by SEM and Electrochemical Techniques, J. Iron. Steel Res. Int., 2009, 16, p 89

    Article  Google Scholar 

  38. D.A. Lopez, W.H. Schreiner, S.R. Sanchez, and S.N. Simison, The Influence of Inhibitors Molecular Structure and Steel Microstructure on Corrosion Layers in CO2 Corrosion An XPS and SEM Characterization, Appl. Surf. Sci., 2004, 236, p 77–97

    Article  Google Scholar 

  39. S.L. Wu, Z.D. Cui, F. He, Z.Q. Bai, S.L. Zhu, and X.J. Yang, Characterization of the Surface Film Formed from Carbon Dioxide Corrosion on N80 Steel, Mater. Lett., 2004, 58, p 1076–1081

    Article  Google Scholar 

  40. ASTM. G31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals. Annual Book of ASTM Standards, Vol 03.02, ASTM International, West Conshohocken, 2013

    Google Scholar 

  41. A. Dugstad, Importance of FeCO3 Supersaturation on the CO2 Corrosion of Carbon Steels, NACE Corrosion, Houston, TX, 1992, Paper no 14

  42. A. Dugstad, Mechanism of Protective Film Formation During CO2 Corrosion of Carbon Steel, NACE CORROSION 98, NACE International, 1998, Paper no 31

  43. J.G. Llongueras, J. Hernandez, A. Munoz, and J.M. Flores, Mechanism of FeCO3 Formation on API X70 Pipeline Steel in Brine Solutions Containing CO2, NACE Corrosion, Houston, Texas, 2005, Paper no 05297

  44. F.F. Eliyan and A. Alfantazi, Effect of Bicarbonate Concentration on Corrosion of High Strength Steel, Corros. Eng. Sci. Technol., 2014, doi:10.1179/1743278214Y.0000000243

    Google Scholar 

  45. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., Eden Praire, 1995

    Google Scholar 

  46. J.L. Mora-mendoza and S. Turgoose, Fe3C Influence on the Corrosion Rate of Mild Steel in Aqueous CO2 Systems Under Turbulent Flow Conditions, Corros. Sci., 2002, 44, p 1223

    Article  Google Scholar 

  47. S. Al-hasan, B. Mishra, D.L. Olson, and M.M. Salama, Effect of Microstructure on Corrosion of Steels in Aqueous Solution Containing Carbon Dioxide, Corrosion, 1998, 54, p 480

    Article  Google Scholar 

  48. D.W. Shannon, Role of Chemical Components in Geothermal Brine on Corrosion, NACE CORROSION 78, NACE International, Houston, TX, 1978, Paper no 57.

  49. J.K. Heuer and J.F. Stubbins, Microstructure Analysis of Coupons Exposed to Carbon Dioxide Corrosion in Multiphase Flow, Corrosion, 1998, 54, p 556

    Article  Google Scholar 

  50. W.C. Baek, T. Kang, H.J. Sohn, and Y.T. Kho, In Situ Surface Enhanced Raman Spectroscopy Study on the Effect of Dissolved Oxygen on the Corrosion Film on Low Carbon Steel in 0.01 M NaCl Solution, Electrochim. Acta, 2001, 46, p 2321–2325

    Article  Google Scholar 

  51. D.A. Lopez, W.H. Schreiner, S.R. de Sanchez, and S.N. Simison, The Influence of Carbon Steel Microstructure on Corrosion Layers an XPS and SEM Characterization, Appl. Surf. Sci., 2003, 207, p 69

    Article  Google Scholar 

  52. A. Welle, J.D. Liao, K. Kaiser, M. Grunze, U. Mader, and N. Blank, Interactions of N, N′-dimethylaminoethanol with Steel Surfaces in Alkaline and Chlorine Containing Solutions, Appl. Surf. Sci., 1997, 119, p 185

    Article  Google Scholar 

  53. P. Li, J.Y. Lin, K.L. Tan, and J.Y. Lee, Electrochemical Impedance and X-ray Photoelectron Spectroscopic Studies of the Inhibition of Mild Steel Corrosion in Acids by Cyclohexylamine, Electrochim. Acta, 1997, 42, p 605

    Article  Google Scholar 

  54. Y. Gonzalez, M.C. Lafont, N. Pebere, G. Chatainier, J. Roy, and T. Bouissou, A Corrosion Inhibition Study of a Carbon Steel in Neutral Chloride Solutions by Zinc Salt/Phosphonic Acid Association, Corros. Sci., 1995, 37, p 1823

    Article  Google Scholar 

  55. K. Kurosawa, H.L. Li, Y. Ujihira, and K. Nomura, Characterization of Carbonitrided and Oxidized Layers on Low-Carbon Steel by Conversion Electron Mössbauer Spectrometry, X-ray Diffractometry, and X-ray Photoelectron Spectrometry, Corrosion, 1999, 55, p 238

    Article  Google Scholar 

Download references

Acknowledgments

This publication was made possible by NPRP Grant # No. 6-027-2-010 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aminul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Farhat, Z.N. Characterization of the Corrosion Layer on Pipeline Steel in Sweet Environment. J. of Materi Eng and Perform 24, 3142–3158 (2015). https://doi.org/10.1007/s11665-015-1564-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1564-4

Keywords

Navigation