Skip to main content

Advertisement

Log in

Effect of Temperature on the Corrosion Behavior of API X120 Pipeline Steel in H2S Environment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of newly developed API X120 C-steel that is commenced to be used for oil pipelines was studied in a H2S saturated 3.5 wt.% NaCl solution between 20 and 60 °C using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The corrosion products formed on the surface of the alloy were characterized using x-ray diffraction and scanning electron microscopy. It has been noticed that the formation of corrosion product layer takes place at both lower and higher temperatures which is mainly comprised of iron oxides and sulfides. The electrochemical results confirmed that the corrosion rate decreases with increasing temperature up to 60 °C. This decrease in corrosion rate with increasing temperature can be attributed to the formation of a protective layer of mackinawite layer. However, cracking in the formed mackinawite layer may not be responsible for the increase in the corrosion rate. More specifically, developed pourbaix diagrams at different temperatures showed that the formed protective layer belongs to mackinawite (FeS), a group of classified polymorphous iron sulfide, which is in good agreement with the experimental results. It is also noticed that the thickness of corrosion products layer increases significantly with decrease in the corrosion rate of API X120 steel exposed to H2S environment. These findings indicate that API X120 C-steel is susceptible to sour corrosion under the above stated experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Igi, T. Sakimoto, and S. Endo, Effect of Internal Pressure on Tensile Strain Capacity of X80 Pipeline, Proc. Eng., 2011, 10, p 1451–1456

    Article  Google Scholar 

  2. N. Jones and R.S. Birch, Influence of Internal Pressure on the Impact Behavior of Steel Pipelines, J. Press. Vessel Technol., 1996, 118(4), p 464–471

    Article  Google Scholar 

  3. M.-C. Zhao, B. Tang, Y.-Y. Shan, and K. Yang, Role of Microstructure on Sulfide Stress Cracking of Oil and Gas Pipeline Steels, MMTA, 2003, 34(5), p 1089–1096

    Article  Google Scholar 

  4. A. Hernández-Espejel, M.A. Domínguez-Crespo, R. Cabrera-Sierra, C. Rodríguez-Meneses, and E.M. Arce-Estrada, Investigations of Corrosion Films Formed on API-X52 Pipeline Steel in Acid Sour Media, Corros. Sci., 2010, 52(7), p 2258–2267

    Article  Google Scholar 

  5. H.F. López, R. Raghunath, J.L. Albarran, and L. Martinez, Microstructural Aspects of Sulfide Stress Cracking in an API, X-80 Pipeline Steel, MMTA, 1996, 27(11), p 3601–3611

    Article  Google Scholar 

  6. F. Nasirpouri, A. Mostafaei, L. Fathyunes, and R. Jafari, Assessment of Localized Corrosion in Carbon Steel Tube-Grade AISI, 1045 used in Output Oil–Gas Separator Vessel of Desalination Unit in Oil Refinery Industry, Eng. Fail. Anal., 2014, 40, p 75–88

    Article  Google Scholar 

  7. M.A. Lucio-Garcia, J.G. Gonzalez-Rodriguez, M. Casales, L. Martinez, J.G. Chacon-Nava, M.A. Neri-Flores, and A. Martinez-Villafañe, Effect of Heat Treatment on H2S Corrosion of a Micro-alloyed C-Mn Steel, Corros. Sci., 2009, 51(10), p 2380–2386

    Article  Google Scholar 

  8. Y. Qi, H. Luo, S. Zheng, C. Chen, Z. Lv, and M. Xiong, Effect of Temperature on the Corrosion Behavior of Carbon Steel in Hydrogen Sulphide Environments, Int. J. Electrochem. Sci., 2014, 9, p 2101–2112

    Google Scholar 

  9. M. Liu, J. Wang, W. Ke, and E.-H. Han, Corrosion Behavior of X52 Anti-H2S Pipeline Steel Exposed to High H2S Concentration Solutions at 90 °C, J. Mater. Sci. Technol., 2014, 30(5), p 504–510

    Article  Google Scholar 

  10. P.C. Okonkwo and A.M.A. Mohamed, Erosion-Corrosion in Oil and Gas Industry: A Review, Int. J. Metall. Mater. Sci. Eng., 2014, 4(3), p 7–28

    Google Scholar 

  11. Z.F. Yin, W.Z. Zhao, Z.Q. Bai, Y.R. Feng, and W.J. Zhou, Corrosion Behavior of SM 80SS Tube Steel in Stimulant Solution Containing H2S and CO2, Electrochim. Acta, 2008, 53(10), p 3690–3700

    Article  Google Scholar 

  12. H. Vedage, T.A. Ramanarayanan, J.D. Mumford, and S.N. Smith, Electrochemical Growth of Iron Sulfide Films in H2S-Saturated Chloride Media, Corrosion, 1993, 49(2), p 114–121

    Article  Google Scholar 

  13. P. Bai, S. Zheng, and C. Chen, Electrochemical Characteristics of the Early Corrosion Stages of API, X52 Steel Exposed to H2S Environments, Mater. Chem. Phys., 2015, 149–150, p 295–301

    Article  Google Scholar 

  14. M. Schulte and M. Schutze, The Role of Scale Stresses in the Sulfidation of Steels, Oxid. Met., 1999, 51(1–2), p 55–77

    Article  Google Scholar 

  15. P.C. Okonkwo, E. Ahmed, and A.M.A. Mohamed, Effect of Temperature on the Corrosion Behavior of API, X80 Steel Pipeline, Int. J. Electrochem. Sci., 2015, 10(12), p 10246–10260

    Google Scholar 

  16. E. Sosa, R. Cabrera-Sierra, M.E. Rincón, M.T. Oropeza, and I. González, Evolution of Non-stoichiometric Iron Sulfide Film Formed by Electrochemical Oxidation of Carbon Steel in Alkaline Sour Environment, Electrochim. Acta, 2002, 47(8), p 1197–1208

    Article  Google Scholar 

  17. R.A. Carneiro, R.C. Ratnapuli, and V. de Freitas Cunha Lins, The Influence of Chemical Composition and Microstructure of API, Linepipe Steels on Hydrogen Induced Cracking and Sulfide Stress Corrosion Cracking, Mat. Sci. Eng. A, 2003, 357(1–2), p 104–110

    Article  Google Scholar 

  18. N.s. TM0284-2003, Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-induced Cracking. NACE International

  19. A. Davoodi, M. Pakshir, M. Babaiee, and G.R. Ebrahimi, A Comparative H2S Corrosion Study of 304L and 316L Stainless Steels in Acidic Media, Corros. Sci., 2011, 53(1), p 399–408

    Article  Google Scholar 

  20. A.B. Radwan, A.M.A. Mohamed, A.M. Abdullah, and M.A. Al-Maadeed, Corrosion Protection of Electrospun PVDF–ZnO Superhydrophobic Coating, Surf. Coat. Technol., 2016, 289, p 136–143

    Article  Google Scholar 

  21. H.-H. Huang, W.-T. Tsai, and J.-T. Lee, Electrochemical Behavior of the Simulated Heat-Affected Zone of A516 Carbon Steel in H2S Solution, Electrochim. Acta, 1996, 41(7–8), p 1191–1199

    Article  Google Scholar 

  22. J. Tang, Y. Shao, J. Guo, T. Zhang, G. Meng, and F. Wang, The Effect of H2S Concentration on the Corrosion Behavior of Carbon Steel at 90 °C, Corros. Sci., 2010, 52(6), p 2050–2058

    Article  Google Scholar 

  23. B. Rutkowski, A. Gil, and A. Czyrska-Filemonowicz, Microstructure and Chemical Composition of the Oxide Scale Formed on the Sanicro 25 Steel Tubes After Fireside Corrosion, Corros. Sci., 2016, 102, p 373–383

    Article  Google Scholar 

  24. W. Zhao, Y. Zou, K. Matsuda, and Z. Zou, Characterization of the Effect of Hydrogen Sulfide on the Corrosion of X80 Pipeline Steel in Saline Solution, Corros. Sci., 2016, 102, p 455–468

    Article  Google Scholar 

  25. P. Bai, H. Zhao, S. Zheng, and C. Chen, Initiation and Developmental Stages of Steel Corrosion in Wet H2S Environments, Corros. Sci., 2015, 93, p 109–119

    Article  Google Scholar 

  26. P. Atempa-Rosiles, M. Díaz-Cruz, J.L. González-Velázquez, J.G. Godínez-Salcedo, Y.A. Rodríguez-Arias, and R. Macías-Salinas, Simulation of Turbulent Flow of a Rotating Cylinder Electrode and Evaluation of its Effect on the Surface of Steel API, 5L X-56 During the Rate of Corrosion in Brine Added with Kerosene and H2S, Int. J. Electrochem. Sci., 2014, 9, p 4805–4815

    Google Scholar 

  27. H. Tamura, The Role of Rusts in Corrosion and Corrosion Protection of Iron and Steel, Corros. Sci., 2008, 50(7), p 1872–1883

    Article  Google Scholar 

  28. D.W. Shoesmith, P. Taylor, M.G. Bailey, and D.G. Owen, The Formation of Ferrous Monosulfide Polymorphs during the Corrosion of Iron by Aqueous Hydrogen Sulfide at 21 °C, J. Electrochem. Soc., 1980, 127(5), p 1007–1015

    Article  Google Scholar 

  29. R.A. King, J.D.A. Miller, and J.S. Smith, Corrosion of Mild Steel by Iron Sulphides, Br. Corros. J., 1973, 8(3), p 137–141

    Article  Google Scholar 

  30. D. Rickard, Metastable Sedimentary Iron Sulfides, Dev. Sedimentol., 2012, 65(1), p 195–231

    Article  Google Scholar 

  31. P. Bai, S. Zheng, C. Chen, and H. Zhao, Investigation of the Iron–Sulfide Phase Transformation in Nanoscale, Cryst. Growth Des., 2014, 14(9), p 4295–4302

    Article  Google Scholar 

  32. A. Solehudin, I. Nurdin, M. Agma, and W. Suratno, EIS Study of Temperature and H2S Concentration Effect on API, 5LX65 Carbon Steel Corrosion in Chloride Solution, J. Mater. Sci. Eng., 2011, 1.4(A), p 496–505

    Google Scholar 

  33. H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron Under Different Conditions, Corros. Sci., 2000, 42(10), p 1669–1683

    Article  Google Scholar 

  34. A.G. Wikjord, T.E. Rummery, F.E. Doern, and D.G. Owen, Corrosion and Deposition During the Exposure of Carbon Steel to Hydrogen Sulphide–Water Solutions, Corros. Sci., 1980, 20(5), p 651–671

    Article  Google Scholar 

  35. B.W.A. Sherar, I.M. Power, P.G. Keech, S. Mitlin, G. Southam, and D.W. Shoesmith, Characterizing the Effect of Carbon Steel Exposure in Sulfide Containing Solutions to Microbially Induced Corrosion, Corros. Sci., 2011, 53(3), p 955–960

    Article  Google Scholar 

  36. R.T. Lowson, Aqueous Oxidation of Pyrite by Molecular Oxygen, Chem. Rev., 1982, 82(5), p 461–497

    Article  Google Scholar 

  37. M. Bonis and J.-L. Crolet, Practical Aspects of the Influence of in situ pH on H2S-Induced Cracking, Corros. Sci., 1987, 27(10–11), p 1059–1070

    Article  Google Scholar 

  38. N. Yaakob, S. Marc, and D. Young, Top of the Line Corrosion Behavior in Highly Sour Environments: Effect of the Gas/Steel Temperature. CORROSION/2014ed., 2014

  39. J.Y. Wang, Q.C. Guan, J.Q. Wei, M. Wang, and Y.G. Liu, Growth and Characterization of Cubic KTa1-x Nb x O3 Crystals. J. Cryst. Growth, 1992, 116(1), p 27–36

    Google Scholar 

  40. J. Chivot, L. Mendoza, C. Mansour, T. Pauporté, and M. Cassir, New Insight in the Behaviour of Co–H2O System at 25-150 °C, Based on REVISED POURBAIX Diagrams, Corros. Sci., 2008, 50(1), p 62–69

    Article  Google Scholar 

  41. A. Rojas-Hernández, M.T. Ramírez, J.G. Ibáñez, and I. González, Construction of Multicomponent Pourbaix Diagrams Using Generalized Species, J. Electrochem. Soc., 1991, 138(2), p 365–371

    Article  Google Scholar 

  42. P. Marcus and E. Protopopoff, Potential-pH Diagrams for Adsorbed Species: Application to Sulfur Adsorbed on Iron in Water at 25° and 300 °C, J. Electrochem. Soc., 1990, 137(9), p 2709–2712

    Article  Google Scholar 

  43. J. Li and P.W. Carr, Effect of Temperature on the Thermodynamic Properties, Kinetic Performance, and Stability of Polybutadiene-Coated Zirconia, Anal. Chem., 1997, 69(5), p 837–843

    Article  Google Scholar 

  44. Y. Li, R.A. van Santen, and T. Weber, High-Temperature FeS–FeS2 Solid-State Transitions: Reactions of Solid Mackinawite with Gaseous H2S, J. Solid State Chem., 2008, 181(11), p 3151–3162

    Article  Google Scholar 

  45. J. Ning, Y. Zheng, B. Brown, D. Young, and S. Nesic, Construction and Verification of Pourbaix Diagrams for Hydrogen Sulfide Corrosion of Mild Steel. NACE International Corrosion ed., 2015

  46. D. Abayarathna , A.R. Naraghi, and S. Wang, The Effect of Surface Films on Corrosion of Carbon Steel in a CO2–H2S–H2O System, Corrosion/2005.Houston:NACE, 2005

  47. J. Ning, Y. Zheng, B. Brown, D. Young, and S. Nesic, Construction and Verification of Pourbaix Diagrams for Hydrogen Sulfide Corrosion of Mild Steel. In NACE International Corrosion 2015 Conference and Expo, 2015, p. 5507

Download references

Acknowledgment

This publication was made possible by NPRP Grant 6-027-2-010 from the Qatar National Research Fund (a member of the Qatar Foundation). Statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Shakoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okonkwo, P.C., Sliem, M.H., Shakoor, R.A. et al. Effect of Temperature on the Corrosion Behavior of API X120 Pipeline Steel in H2S Environment. J. of Materi Eng and Perform 26, 3775–3783 (2017). https://doi.org/10.1007/s11665-017-2834-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2834-0

Keywords

Navigation