Skip to main content
Log in

Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61(3), p 782–817

    Article  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189

    Article  Google Scholar 

  3. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, A Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann., 2008, 57(2), p 716–735

    Article  Google Scholar 

  4. V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 170(1-2), p 157–164

    Article  Google Scholar 

  5. H.G. Salem and J.S. Lyons, Effect of Equal Channel Angular Extrusion on the Microstructure and Superplasticity of an Al-Li Alloy, J. Mater. Eng. Perform., 2002, 11(4), p 384–391

    Article  Google Scholar 

  6. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1999, 40(7), p 95–800

    Article  Google Scholar 

  7. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227

    Article  Google Scholar 

  8. V. Jindal, P.K.P. Rupa, G.K. Mandal, and V.C. Srivastava, Effect of High Temperature Severe Plastic Deformation on Microstructure and Mechanical Properties of IF Steel, J. Mater. Eng. Perform., 2014, 23(6), p 1954–1958

    Article  Google Scholar 

  9. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng. A, 1991, 137, p 35–40

    Article  Google Scholar 

  10. Y. Ito and Z. Horita, Microstructural Evolution in Pure Aluminum Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2009, 503(1-2), p 32–36

    Article  Google Scholar 

  11. Z. Horita and T.G. Langdon, Microstructures and Microhardness of an Aluminum Alloy and Pure Copper After Processing by High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410-411, p 422–425

    Article  Google Scholar 

  12. G.A. Salishchev, R.M. Galeyev, S.P. Malysheva, and M.M. Myshlyaev, Structure and Density of Submicrocrystalline Titanium Produced by Severe Plastic Deformation, Nanostruct. Mater., 1999, 11(3), p 407–414

    Article  Google Scholar 

  13. N.P. Gurao, P. Kumar, A. Sarkar, H.-G. Brokemeier, and S. Suwas, Simulation of Deformation Texture During Multi Axial Forging of Interstitial Free Steel, J. Mater. Eng. Perform., 2013, 22(4), p 1004–1009

    Article  Google Scholar 

  14. G.A. Salishchev, S. Yu, Mironov, and S.V. Zherebtsov, Mechanism of Submicrocrystalline Structure Formation in Titanium and Two Phase Titanium Alloy During Warm Severe Processing, Rev. Adv. Mater. Sci., 2006, 11(2), p 152–158

    Google Scholar 

  15. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S. Mironov Yu, and S.L. Semiatin, Production of Submicrocrystalline Structure in Large-scale Ti-6Al-4V Billet by Warm Severe Deformation Processing, Scr. Mater., 2004, 51(12), p 1147–1151

    Article  Google Scholar 

  16. A.K.Ghosh, Method for Producing a Fine-Grain Aluminium Alloy Using Three Axis Deformation, US Patent 4,721,537, 1988

  17. A. Kundu, R. Kapoor, R. Tewari, and J.K. Chakravartty, Severe Plastic Deformation of Copper Using Multiple Compression in a Channel Die, Scr. Mater., 2008, 58(3), p 235–238

    Article  Google Scholar 

  18. A.K. Parimi, P.S. Robi, and S.K. Dwivedy, Severe Plastic Deformation of Copper and Al-Cu Alloy Using Multiple Channel Die Compression, Mater. Des., 2011, 32(4), p 1948–1956

    Article  Google Scholar 

  19. R. Kapoor, A. Sarkar, R. Yogi, S.K. Shekhawat, I. Samajdar, and J.K. Chakravartty, Softening of Al During Multi-axial Forging in a Channel Die, Mater. Sci. Eng. A, 2013, 560, p p404–412

    Article  Google Scholar 

  20. S.H. Ahn, Y.B. Chun, S.H. Yu, K.H. Kim, and S.K. Hwang, Microstructural Refinement and Deformation Mode of Ti Under Cryogenic Channel Die Compression, Mater. Sci. Eng. A, 2010, 528(1), p 165–171

    Article  Google Scholar 

  21. E. Schafler, G. Steiner, E. Korznikov, M. Kerber, and M.J. Zehetbauer, Lattice Defect Investigation of ECAP-Cu by Means of x-ray Line Profile Analysis, Calorimetry and Electrical Resistometry, Mater. Sci. Eng. A, 2005, 410-411, p 169–173

    Article  Google Scholar 

  22. W.Q. Cao, C.F. Gu, E.V. Pereloma, and C.H.J. Davies, Stored Energy, Vacancies and Thermal Stability of Ultra-Fine Grained Copper, Mater. Sci. Eng. A, 2008, 492(1-2), p 74–79

    Article  Google Scholar 

  23. N. Gao, M.J. Starink, and T.G. Langdon, Using Differential Scanning Calorimetry as an Analytical Tool for Ultrafine Grained Materials Processed by Severe Plastic Deformation, Mater. Sci. Technol., 2009, 25(6), p 687–698

    Article  Google Scholar 

  24. H. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe, Microstructural Evolution, Microhardness and Thermal Stability of HPT-Processed Cu, Mater. Sci. Eng. A, 2000, 290(1-2), p 128–138

    Article  Google Scholar 

  25. D. Setman, M.B. Kerber, E. Schafler, and M.J. Zehetbauer, Activation Enthalpies of Deformation-Induced Lattice Defects in Severe Plastic Deformation Nanometals Measured by Differential Scanning Calorimetry, Metall. Mater. Trans. A, 2010, 41(4), p 810–815

    Article  Google Scholar 

  26. N. Takata, K. Yamada, K. Ikeda, F. Yoshida, H. Nakashima, and N. Tsuji, Annealing Behaviour and Recrystallized Texture in ARB Processed Copper, Mater. Sci. Forum, 2006, 503-504, p 919–924

    Article  Google Scholar 

  27. F. Khodabakhshi and M. Kazeminezhad, The Effect of Constrained Groove Pressing on Grain Size, Dislocation Density and Electrical Resistivity of Low Carbon Steel, Mater. Des., 2011, 32(6), p p3280–p3286

    Article  Google Scholar 

  28. F. Khodabakhshi and M. Kazeminezhad, Differential Scanning Calorimetry Study of Constrained Groove Pressed Low Carbon Steel: Recovery, Recrystallization and Ferrite to Austenite Phase Transformation, Mater. Sci. Technol., 2014, 30(7), p 765–773

    Article  Google Scholar 

  29. H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), p 1702–1706

    Article  Google Scholar 

  30. G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31

    Article  Google Scholar 

  31. Z. Zhang, F. Zhou, and E.J. Lavernia, On the Analysis of Grain Size in Bulk Nanocrystalline Materials by X-ray Diffraction, Metall. Mater. Trans. A, 2003, 34(6), p 1349–1355

    Article  Google Scholar 

  32. N. Rangaraju, T. Raghuram, B. Vamsi Krishna, K. Prasad Rao, and P. Venugopal, Effect of Cryo-Rolling and Annealing on Microstructure and Properties of Commercially Pure Aluminium, Mater. Sci. Eng. A, 2005, 398(1-2), p 246–251

    Article  Google Scholar 

  33. W.D. Casllister, Jr., Materials Science and Engineering: An Introduction, Wiley, Singapore, 1994

    Google Scholar 

  34. O.F. Higuera-Cobos and J.M. Cabrera, Mechanical, Microstructural and Electrical Evolution of Commercially Pure Copper Processed by Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2013, 571, p 103–114

    Article  Google Scholar 

  35. S.A. Hosseini and H.D. Manesh, High-Strength, High-Conductivity Ultra-Fine Grains Commercial Pure Copper Produced by ARB Process, Mater. Des., 2009, 30(8), p 2911–2918

    Article  Google Scholar 

  36. A. Habibi, M. Ketabchi, and M. Eskandarzadeh, Nano-Grained Pure Copper with High-Strength and High-Conductivity Produced by Equal Channel Angular Rolling Process, J. Mater. Process. Technol., 2011, 211(6), p 1085–1090

    Article  Google Scholar 

  37. N. Lugo, N. Llorca, J.J. Suñol, and J.M. Cabrera, Thermal Stability of Ultrafine Grains Size of Pure Copper Obtained by Equal-Channel Angular Pressing, J. Mater. Sci., 2010, 45(9), p 2264–2273

    Article  Google Scholar 

  38. J. Gubicza, S.V. Dobatkin, E. Khosravi, A.A. Kuznetsov, and J.L. Labar, Microstructural Stability of Cu Processed by Different Routes of Severe Plastic Deformation, Mater. Sci. Eng. A, 2011, 528(3), p 1828–1832

    Article  Google Scholar 

  39. A. Mishra, V. Richard, F. Gregori, R.J. Asaro, and M.A. Meyers, Microstructural Evolution in Copper Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2005, 410-411, p 290–298

    Article  Google Scholar 

  40. X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig, Thermal Stability of ECAP Processed Pure Copper, Mater. Sci. Eng. A, 2007, 460-461, p 204–213

    Article  Google Scholar 

  41. Y. Amouyal, S.V. Divinski, L. Klinger, and E. Rabkin, Grain Boundary Diffusion and Recrystallization in Ultrafine Grain Copper Produced by Equal Channel Angular Pressing, Acta Mater., 2008, 56(19), p 5500–5513

    Article  Google Scholar 

  42. W. Blum, Y.J. Li, and K. Durst, Stability of Ultrafine Grained Cu to Subgrain Coarsening and Recrystallization in Annealing and Deformation at Elevated Temperatures, Acta Mater., 2009, 57(17), p 5207–5217

    Article  Google Scholar 

  43. R. Viswanathan and C.L. Bauer, Kinetics of Grain Boundary Migration in Copper Bi-Crystals with [001] Rotation Axis, Acta Metall., 1973, 21(8), p 1099–1109

    Article  Google Scholar 

  44. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004

    Google Scholar 

  45. A. Takayama, X. Yang, H. Miura, and T. Sakai, Continuous Static Recrystallization in Ultrafine-Grained Copper Processed by Multi-directional Forging, Mater. Sci. Eng. A, 2008, 478(1-2), p 221–228

    Article  Google Scholar 

  46. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An Investigation of Microstructural Stability in Al-Mg Alloy with Sub Micrometer Grain Size, Acta Mater., 1996, 44(7), p 2973–2982

    Article  Google Scholar 

  47. M.J. Zehetbauer, E. Schafler, and T. Ungar, Vacancies in Plastically Deformed Copper, Z. Metall., 2005, 96(9), p 1044–1048

    Article  Google Scholar 

  48. D. Setman, E. Schafler, E. Korznikova, and M.J. Zehetbauer, The Presence and Nature of Vacancy Type Defects in Nanometals Detained by Severe Plastic Deformation, Mater. Sci. Eng. A, 2008, 493(1-2), p 116–122

    Article  Google Scholar 

  49. J. Gubicza, S.V. Dobatkin, and E. Khosravi, Reduction of Vacancy Concentration During Storage of Severely Deformed Cu, Mater. Sci. Eng. A, 2010, 527(21-22), p 6102–6104

    Article  Google Scholar 

  50. C. Saldana, A.H. King, and S. Chandrasekar, Thermal Stability and Strength of Deformation Microstructures in Pure Copper, Acta Mater., 2012, 60(10), p p4107–p4116

    Article  Google Scholar 

  51. G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I: Theoretical, Proc. R. Soc., 1934, 145(855), p 362–387

    Article  Google Scholar 

  52. S.S. Satheesh Kumar and T. Raghu, Tensile Behaviour and Strain Hardening Characteristics of Constrained Groove Pressed Nickel Sheets, Mater. Des., 2011, 32(8-9), p 4650–4657

    Article  Google Scholar 

  53. Z.S. Basinski and J.S. Dugdale, Electrical Resistivity Due to Dislocations in Highly Purified Copper, Phy. Rev. B, 1985, 32(4), p 2149–2155

    Article  Google Scholar 

  54. A. Rohatgi and K.S. Vecchio, The Variation of Dislocation Density as a Function of the Stacking Fault Energy in Shock-Deformed FCC Materials, Mater. Sci. Eng. A, 2002, 328(1-2), p 256–266

    Article  Google Scholar 

  55. Y.H. Zhao, Z. Horita, T.G. Langdon, and Y.T. Zhu, Evolution of Defect Structures During Cold Rolling of Ultrafine-Grained Cu and Cu-Zn Alloys-Influence of Stacking Fault Energy, Mater. Sci. Eng. A, 2008, 474(1-2), p 342–347

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Amol A Gokhale, Director, Defence Metallurgical Research Laboratory (DMRL) for permitting us to publish this work. The authors also acknowledge the assistance rendered by Advanced Magnetics Group (AMG) for performing DSC experiments. Authors wish to thank Dr. Pinaki P Bhattacharjee, Head, Dept. of Material Science and Metallurgical Engineering, IIT, Hyderabad for providing access to EBSD characterization. Authors also thank Mr. Akkisetty Bhaskar and Mr. K Basant Kumar, Research Scholars, IIT Hyderabad for helping in carrying out x-ray diffraction experiments.The authors acknowledge the funding provided by Defence Research and Development Organization (DRDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Satheesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satheesh Kumar, S.S., Raghu, T. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper. J. of Materi Eng and Perform 24, 726–736 (2015). https://doi.org/10.1007/s11665-014-1359-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1359-z

Keywords

Navigation