Skip to main content
Log in

Plane Strain Deformation Behavior and Evolution of Grain Boundary Characteristics of Inconel 625 Alloy

  • Deformation-influenced Microstructural Evolution of High-Temperature Alloy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Studying the thermal deformation behavior and microstructure evolution under different conditions is a crucial step in improving the formability of a material. In this study, the deformation behavior and microstructural evolution of Inconel 625 alloy sheet under plane strain compression were studied using scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. The results indicate that the serrated flow phenomenon in the effective stress-strain curve is caused by dislocation pinning and depinning near carbides. Additionally, the recrystallization behavior and grain boundary evolution of the alloy were thoroughly investigated. At high temperatures and low strain rates, the primary recrystallization mechanism in Inconel 625 alloy is discontinuous dynamic recrystallization. As the deformation temperature increases, dynamic recrystallization behavior become more dominant, leading to a higher proportion of special grain boundaries in the alloy. Moreover, due to the adiabatic temperature rise effect, fully recrystallized microstructures and a high fraction of special grain boundaries were obtained at both high and low strain rates. These findings providing valuable insights for enhancing the formability and optimizing the performance of the alloy in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data are available from the corresponding author on reasonable request.

References

  1. Y.B. Gao, Y.T. Ding, B. Meng, Y.J. Ma, J.J. Chen, and J.Y. Xu, J. Mater. Eng. 48, 13 https://doi.org/10.11868/j.issn.1001-4381.2018.000424 (2020).

    Article  Google Scholar 

  2. Q. Zhang, J.W. Wang, Y.S. Shi, and Q.S. Wei, Heat Treat. Met. 38, 65 https://doi.org/10.1016/j.vacuum.2018.07.041 (2013).

    Article  Google Scholar 

  3. J. Nguejio, F. Szmytka, S. Hallais, A. Tanguy, S. Nardone, and M. Godino Martinez, Mater. Sci. Eng. 764, 138214.1 https://doi.org/10.1016/j.msea.2019.138214 (2019).

    Article  Google Scholar 

  4. L.J. Yu and E.A. Marquis, J. Alloys Compd. 811, 151916 https://doi.org/10.1016/j.jallcom.2019.151916 (2019).

    Article  Google Scholar 

  5. Y. Wang, L. Zhen, W. Shao, and L. Yang, J. Alloys Compd. 474, 341 https://doi.org/10.1016/j.jallcom.2008.06.079 (2009).

    Article  Google Scholar 

  6. S. Guo, D. Li, H. Pen, and Q. Guo, J. Nucl. Mater. 410, 52 https://doi.org/10.1016/j.jnucmat.2010.12.309 (2011).

    Article  Google Scholar 

  7. P. Zhang, C. Hu, C.-G. Ding, and Q. Zhu, Mater. Des. 65, 575 https://doi.org/10.1016/j.matdes.2014.09.062 (2015).

    Article  Google Scholar 

  8. J.Z. Wang, K.Y. Li, A.J. Liu, and K.L. Ding, Met. Heat Treat. 43, 96 https://doi.org/10.13251/j.issn.0254-6051.2018.05.018 (2018).

    Article  Google Scholar 

  9. M.S. Chen, Z.H. Zou, Y.C. Lin, and K.K. Li, Vacuum 155, 531 https://doi.org/10.1016/j.vacuum.2018.06.059 (2018).

    Article  Google Scholar 

  10. Z. Hongbin, Z. Kaifeng, and Z. Haiping, Mater. Des. 80, 51 (2015).

    Article  Google Scholar 

  11. Z.W. Jiang, L.L. Zhu, L.X. Yu, B.A. Sun, Y. Cao, Y.H. Zhao, and Y. Zhang, Mater. Sci. Eng. A 820, 141575 https://doi.org/10.1016/j.jmst.2020.10.042 (2021).

    Article  Google Scholar 

  12. W.S.R.C.L. Hale, and M.L. Weaver, Mater. Sci. Eng. A 300, 153 https://doi.org/10.1016/S0921-5093(00)01470-2 (2001).

    Article  Google Scholar 

  13. C.Y. Cui, T. Jin, and X.F. Sun, J. Mater. Sci. 46, 5546 https://doi.org/10.1007/s10853-011-5501-0 (2011).

    Article  Google Scholar 

  14. A. Belyakov, K. Tsuzaki, and H. Miura, Acta Mater. 51, 847 https://doi.org/10.1016/S1359-6454(02)00476-7 (2003).

    Article  Google Scholar 

  15. H. McQueen, Mater. Sci. Eng. A 387, 203 https://doi.org/10.1016/j.msea.2004.01.064 (2004).

    Article  Google Scholar 

  16. Q. Guo, D. Li, H. Peng, S. Guo, and J. Hu, Rare Met. 31, 215 https://doi.org/10.1007/s12598-012-0494-7 (2012).

    Article  Google Scholar 

  17. S. Mandal, M. Jayalakshmi, and A. Bhaduri, Metall. Mater. Trans. A 45, 5645 https://doi.org/10.1007/s11661-014-2480-1 (2014).

    Article  Google Scholar 

  18. Y. Wang, W. Shao, L. Zhen, and L. Yang, Mater. Sci. Eng. A 497, 479 https://doi.org/10.1016/j.msea.2008.07.046 (2008).

    Article  Google Scholar 

  19. Z. Jia, X. Sun, J.J. Ji, Y.J. Wang, B.L. Wei, and L.D. Yu, Adv. Eng. Mater. 23, 2001048 https://doi.org/10.1002/adem.202001048 (2021).

    Article  Google Scholar 

  20. T. Watanabe, Res. Mech. 11, 47 (1984).

    Google Scholar 

  21. Y. Cao, H. Di, R. Misra, X. Yi, and J. Zhang, Mater. Sci. Eng. A 593, 111 https://doi.org/10.1016/j.msea.2013.11.030 (2014).

    Article  Google Scholar 

  22. M. Christopher, Acta Metall. 144, 281 https://doi.org/10.1016/j.actamat.2017.10.007 (2018).

    Article  Google Scholar 

  23. C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, and W. Chen, Corros. Sci. 53, 1880 https://doi.org/10.1016/j.scriptamat.2016.11.032 (2011).

    Article  Google Scholar 

  24. Q. Mao, M. Zhang, Y. Zhi, C. Wang, and H. Li, Mater Charact 181, 111510 https://doi.org/10.1016/j.matchar.2021.111510 (2021).

    Article  Google Scholar 

  25. X.J. Guan, Z.P. Jia, S.M. Liang, F. Shi, and X.W. Li, J. Mater. Sci. Technol. 113, 82 https://doi.org/10.1016/j.jmst.2021.09.063 (2022).

    Article  Google Scholar 

  26. X.J. Guan, F. Shi, H.M. Ji, and X.W. Li, Scr. Mater. 187, 216 (2020).

    Article  Google Scholar 

  27. V. Sample, G. Fitzsimons, and A. DeArdo, Acta Metall. 35, 367 https://doi.org/10.1016/0001-6160(87)90244-6 (1987).

    Article  Google Scholar 

  28. Z. Jia, Z.X. Gao, J.J. Ji, D.X. Liu, T.B. Guo, and Y.T. Ding, Materials 12, 510 https://doi.org/10.1016/j.promfg.2020.08.118 (2019).

    Article  Google Scholar 

  29. T. Lin, C. Ming, S. Guangsheng, and S. Zhang, Precis. Form. Eng. 4, 1 (2012).

    Google Scholar 

  30. H. Ding, C. Xu, X. Zhang, X. Pan, and T. Wang, Chin. J. Nonferrous Met. 25, 2075 (2015).

    Google Scholar 

  31. S. Guo, D. Li, Q. Guo, Z. Wu, H. Peng, and J. Hu, J. Mater. Sci. 47, 5867 https://doi.org/10.1007/s10853-012-6488-x (2012).

    Article  Google Scholar 

  32. N. Bozzolo and M. Bernacki, Metall. Mater. Trans. A 51, 2665 https://doi.org/10.1007/s11661-020-05772-7 (2020).

    Article  Google Scholar 

  33. M. Detrois, J. Rotella, R.L. Goetz, R.C. Helmink, and S. Tin, Mater. Sci. Eng. A 627, 95 https://doi.org/10.1016/j.msea.2014.12.112 (2015).

    Article  Google Scholar 

  34. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, and J.W. Qiao, Prog. Mater. Sci. 90, 358 https://doi.org/10.1016/j.pmatsci.2017.06.004 (2017).

    Article  Google Scholar 

  35. J. Lee, M. Terner, S. Jun, H.-U. Hong, E. Copin, and P. Lours, Mater. Sci. Eng. A 790, 139720 https://doi.org/10.1016/j.msea.2020.139720 (2020).

    Article  Google Scholar 

  36. A. Gholamzadeh and A.K. Taheri, Mech. Res. Commun. 36, 252 https://doi.org/10.1016/j.mechrescom.2008.06.011 (2009).

    Article  Google Scholar 

  37. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp451–467.

    Book  Google Scholar 

  38. G.L. Liu, W.L. Cheng, L. Luo, H. Yu, L.F. Wang, H. Li, H.X. Wang, and J.H. Wang, J. Mater. Res. Technol. 25, 497 https://doi.org/10.1016/j.jmrt.2023.05.265 (2023).

    Article  Google Scholar 

  39. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp427–428.

    Google Scholar 

  40. B. Xie, H. Yu, T. Sheng, Y. Xiong, Y. Ning, and M.W. Fu, J. Alloys Compd. 803, 16 https://doi.org/10.1016/j.jallcom.2019.06.202 (2019).

    Article  Google Scholar 

  41. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra, Mater. Sci. Eng. A 585, 71 https://doi.org/10.1016/j.msea.2013.07.037 (2013).

    Article  Google Scholar 

  42. S. Mandal, A. Bhaduri, and V.S. Sarma, Metall. Mater. Trans. A 43, 2056 https://doi.org/10.1007/s11661-011-1012-5 (2012).

    Article  Google Scholar 

  43. V. Randle and G. Owen, Acta Mater. 54, 1777 https://doi.org/10.1016/j.actamat.2005.11.046 (2006).

    Article  Google Scholar 

  44. M. Detrois, R.L. Goetz, R.C. Helmink, and S. Tin, Mater. Sci. Eng. A 647, 157 https://doi.org/10.1016/j.msea.2015.09.022 (2015).

    Article  Google Scholar 

  45. W. Wang and H. Guo, Mater. Sci. Eng. A 445–446, 155 https://doi.org/10.1016/j.msea.2006.09.034 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science and Technology Major Project (nos. J2019-VI-0023-0140 and MJ-2018-G-48) and the Research Fund of the State Key Laboratory of Solidification Processing (NPU) (no. 2022-TS-04) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

ZJ: Investigation, Writing-original draft, Visualization, Formal analysis, Data curation, Methodology. JF: Investigation, Visualization, Formal analysis, Data curation, Writing-review & editing. YS and ZW: Investigation, Formal analysis, Data curation. JL: Supervision, Funding acquisition.

Corresponding author

Correspondence to Jiangkun Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 82 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Z., Fan, J., Song, Y. et al. Plane Strain Deformation Behavior and Evolution of Grain Boundary Characteristics of Inconel 625 Alloy. JOM 76, 2245–2259 (2024). https://doi.org/10.1007/s11837-024-06381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06381-0

Navigation