Skip to main content

Advertisement

Log in

Effect of Copper Oxide and Manganese Oxide on Properties and Low Temperature Degradation of Sintered Y-TZP Ceramic

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of copper oxide (CuO) and manganese oxide (MnO2) co-dopant on the densification behavior of 3 mol% yttria-stabilized zirconia was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1250 to 1500 °C with a short holding time of 12 min. Sintered bodies were characterized to determine the phase stability, bulk density, hardness, fracture toughness, Young’s modulus and grain size. In addition, the aging-induced tetragonal to monoclinic phase transformation of the sintered zirconia was evaluated. It was revealed that the addition of CuO-MnO2 co-dopant was beneficial in enhancing the densification and mechanical properties of the ceramic particularly at low temperatures. A high fracture toughness of 5.5 MPam1/2 coupled with high hardness of 14.5 GPa was obtained for co-doped samples sintered at 1350 °C. However, the undoped ceramic exhibited better properties when sintered above 1350 °C. The study also found that the dopants did not prevent grain coarsening and hence did not suppress the aging-induced phase transformation particularly for samples sintered above 1350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Saridag, O. Tak, and G. Alniacik, Basic Properties and Types of Zirconia: An Overview, World J. Stomatol., 2013, 2, p 40–47

    Google Scholar 

  2. K.K. Chong, J. Palamara, R.H. Wong, and R.B. Judge, Fracture Force of Cantilevered Zirconia Frameworks: An In Vitro Study, J. Prosthet. Dent., 2014. doi:10.1016/j.prosdent.2014.04.016

  3. S. Ran, A.J.A. Winnubst, H. Koster, P.J. de Veen, and D.H.A. Blank, Sintering Behaviour and Microstructure of 3Y-TZP + 8 mol% CuO Nano-powder Composite, J. Eur. Ceram. Soc., 2007, 27, p 683–687

    Article  Google Scholar 

  4. I. Denry and J.R. Kelly, State of the Art of Zirconia for Dental Applications, Dent. Mater., 2008, 24, p 299–307

    Article  Google Scholar 

  5. S. Deville, J. Chevalier, G. Fantozzi, J.F. Bartolomé, Jn Requena, J.S. Moya, R. Torrecillas, and L.A. Díaz, Low-Temperature Ageing of Zirconia-Toughened Alumina Ceramics and its Implication in Biomedical Implants, J. Eur. Ceram. Soc., 2003, 23, p 2975–2982

    Article  Google Scholar 

  6. S.A. Ali, S. Karthigeyan, M. Deivanai, and R. Mani, Zirconia Properties and Application—A Review, Pak. Oral Dental J., 2014, 34, p 178–183

    Google Scholar 

  7. H.J. Conrad, W.-J. Seong, and I.J. Pesun, Current Ceramic Materials and Systems with Clinical Recommendations: A Systematic Review, J. Prosthet. Dent., 2007, 98, p 389–404

    Article  Google Scholar 

  8. J. Chevalier, What Future for Zirconia as a Biomaterial?, Biomaterials, 2006, 27, p 535–543

    Article  Google Scholar 

  9. K. Bitter, H. Meyer-Lückel, K. Priehn, P. Martus, and A.M. Kielbassa, Bond Strengths of Resin Cements to Fiber-Reinforced Composite Posts, Am. J. Dent., 2006, 19, p 138–142

    Google Scholar 

  10. J. Chevalier, L. Gremillard, A.V. Virkar, and D.R. Clarke, The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, J. Am. Ceram. Soc., 2009, 92, p 1901–1920

    Article  Google Scholar 

  11. S. Ramesh, M. Amiriyan, S. Meenaloshini, R. Tolouei, M. Hamdi, J. Pruboloksono, and W.D. Teng, Densification Behaviour and Properties of Manganese Oxide Doped Y-TZP Ceramics, Ceram. Int., 2011, 37, p 3583–3590

    Article  Google Scholar 

  12. M. Keuper, C. Berthold, and K.G. Nickel, Long-Time Aging in 3 mol.% Yttria-Stabilized Tetragonal Zirconia Polycrystals at Human Body Temperature, Acta Biomater., 2014, 10, p 951–959

    Article  Google Scholar 

  13. J.A. Muñoz-Tabares, E. Jiménez-Piqué, and M. Anglada, Subsurface Evaluation of Hydrothermal Degradation of Zirconia, Acta Mater., 2011, 59, p 473–484

    Article  Google Scholar 

  14. S. Ramesh, Review of Ageing Behaviour of Yttria-Tetragonal Zirconia-Polycrystals (Y-TZP): Part 1, Experimental Observations, Indian J. Sci. Technol., 1998, 7, p 1–29

    Google Scholar 

  15. A. Feder and M. Anglada, Low-Temperature Ageing Degradation of 2.5 Y-TZP Heat-Treated at 1650°C, J. Eur. Ceram. Soc., 2005, 25, p 3117–3124

    Article  Google Scholar 

  16. S. Deville, J. Chevalier, and L. Gremillard, Influence of Surface Finish and Residual Stresses on the Ageing Sensitivity of Biomedical Grade Zirconia, Biomaterials, 2006, 27, p 2186–2192

    Article  Google Scholar 

  17. J. Li, R. Watanabe, B.P. Zhang, K. Asami, and H. Hashimoto, X-Ray Photoelectron Spectroscopy Investigation on the Low Temperature Degradation, J. Am. Ceram. Soc., 1996, 79, p 3109–3112

    Article  Google Scholar 

  18. L. Hallmann, P. Ulmer, E. Reusser, M. Louvel, and C.H.F. Hämmerle, Effect of Dopants and Sintering Temperature on Microstructure and Low Temperature Degradation of Dental Y-TZP-Zirconia, J. Eur. Ceram. Soc., 2012, 32, p 4091–4104

    Article  Google Scholar 

  19. H. Zhou, J. Li, D. Yi, and L. Xiao, Effect of Manganese Oxide on the Sintered Properties of 8YSZ, Phys. Procedia, 2011, 22, p 14–19

    Article  Google Scholar 

  20. U. Sankar, M. Satgunam, M. Amiriyan, R. Singh, and W.D. Teng, Sintering and Densification Behavior of ZnO-Doped Y-TZP Ceramics, Appl. Mech. Mater., 2011, 83, p 197–203

    Article  Google Scholar 

  21. F. Guo and P. Xiao, Effect of Fe2O3 Doping on Sintering of Yttria-Stabilized Zirconia, J. Eur. Ceram. Soc., 2012, 32, p 4157–4164

    Article  Google Scholar 

  22. P. Kanellopoulos and C. Gill, Hydrothermal Ageing of Yttria-Stabilised Zirconia, Sintered at 1300°C–1325°C: The Effects of Copper Oxide Doping and Sintering Time Variations, J. Mater. Sci., 2002, 37, p 5075–5082

    Article  Google Scholar 

  23. S. Ramesh, W.J.K. Chew, C.Y. Tan, J. Purbolaksono, A.M. Noor, M.A. Hassan, U. Sutharsini, M. Satgunam, and W.D. Teng, Influence of Manganese on the Sintering Properties of Tetragonal Zirconia, Ceram. Silik., 2013, 57, p 28–32

    Google Scholar 

  24. S. Ran, J. Vleugels, S. Huang, K. Vanmeensel, D.H.A. Blank, and L. Winnubst, Manipulating Microstructure and Mechanical Properties of CuO doped 3Y-TZP Nano-Ceramics Using Spark-Plasma Sintering, J. Eur. Ceram. Soc., 2010, 30, p 899–904

    Article  Google Scholar 

  25. S. Ramesh, C. Gill, and S. Lawson, The Effect of Copper Oxide on Sintering, Microstructure, Mechanical Properties and Hydrothermal Ageing of Coated 2.5Y-TZP Ceramics, J. Mater. Sci., 1999, 34, p 5457–5467

    Article  Google Scholar 

  26. S. Ramesh and C. Gill, Environmental Degradation of CuO-Doped Y-TZP Ceramics, Ceram. Int., 2001, 27, p 705–711

    Article  Google Scholar 

  27. S. Ramesh, S. Meenaloshini, C.Y. Tan, W.J.K. Chew, and W.D. Teng, Effect of Manganese Oxide on the Sintered Properties and Low Temperature Degradation of Y-TZP Ceramics, Ceram. Int., 2008, 34, p 1603–1608

    Article  Google Scholar 

  28. ASTM Standard C1259-2008e1, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation Of Vibration,” ASTM International, West Conshoshocken, PA, 2008

  29. K. Niihara, H. Morena, and D.P.H. Hasselman, Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack to Indent Ratios, J. Mater. Sci. Lett., 1982, 1, p 13–16

    Article  Google Scholar 

  30. A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Ceram. Soc., 1976, 59, p 371–372

    Article  Google Scholar 

  31. M.I. Mendelson, Average Grain Size in Polycrystalline Ceramics, J. Am. Ceram. Soc., 1969, 52, p 443–446

    Article  Google Scholar 

  32. H. Toraya, M. Yoshimura, and S. Somiya, Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, Commun. Am. Ceram. Soc., 1984, 67, p 119–121

    Google Scholar 

  33. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall Inc, New Jersey, 2001, p 167–170

    Google Scholar 

  34. T.P. Raming, A.J.A. Winnubst, W.E. van Zyl, and H. Verweij, Densification of Zirconia–Hematite Nanopowders, J. Eur. Ceram. Soc., 2003, 23, p 1053–1060

    Article  Google Scholar 

  35. J.R. Seidensticker and M.J. Mayo, Thermal Analysis of 3-mol%-Yttriastabilized Etragonal Zirconia Powder Doped with Copper Oxide, J. Am. Ceram. Soc., 1996, 79, p 401–406

    Article  Google Scholar 

  36. Y. Sakka, T. Ishii, T.S. Suzuki, K. Morita, and K. Hiraga, Fabrication of High-Strain Rate Superplastic Yttria-Doped Zirconia Polycrystals by Adding Manganese and Aluminum Oxides, J. Eur. Ceram. Soc., 2004, 24, p 449–453

    Article  Google Scholar 

  37. S. Meenaloshini, S. Ramesh, I. Sopyan, and W.D. Teng, Densification Studies of Tetragonal Zirconia with Manganese as Sintering Additive, Int. Conf. Constr. Build. Technol., 2008, 17, p 187–196

    Google Scholar 

  38. D. Zhang, D. Song, Y. Liao, X. Chen, and M. Wang, Effect of alumina addition on mechanical behavior and fracture properties of all-ceramics zirconia dental materials, J. Mech. Med. Biol., 2014. doi:10.1142/S0219519414500158

  39. S. Lawson, C. Gill, and G.P. Dransfield, The Effects of Copper and Iron Oxide Additions on the Sintering and Properties of Y-TZP, J. Mater. Sci., 1995, 30, p 3057–3060

    Article  Google Scholar 

  40. S. Ramesh, C. Gill, S. Lawson, and G.P. Dransfield, Sintering, Microstructure and Mechanical Properties of Commercial Y-TZPs, J. Mater. Sci., 1996, 31, p 6055–6062

    Article  Google Scholar 

  41. S. Ramesh, J. Purbolaksono, M. Hamdi, I. Sopyan, R. Tolouei, M. Amiriyan, F. Tarlochan, and W.D. Teng, Low-Temperature Degradation (LTD) Behaviour of CuO-Doped Tetragonal Zirconia Ceramic, Ceram. Silik., 2012, 56, p 15–19

    Google Scholar 

  42. S. Sivakumar, S. Ramesh, K.L. Chin, C.Y. Tan, and W.D. Teng, Effect of Sintering Profiles on the Properties and Ageing Resistance of Y-TZP Ceramics, Int. J. Automot. Mech. Eng. (IJAME), 2011, 4, p 406–413

    Google Scholar 

  43. K. Castkova, H. Hadraba, and J. Cihlar, Hydrothermal Ageing of Tetragonal Zirconia Ceramics, Ceram. Silik., 2004, 48, p 85–92

    Google Scholar 

  44. L. Lemaire, S.M. Scholz, P. Bowen, J. Dutta, H. Hofmeister, and H. Hofmann, Effect of CuO Additives on the Reversibility of Zirconia Crystalline Phase Transitions, J. Mater. Sci., 1999, 34, p 2207–2215

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported under the PPP Grant No. PG079-2013A and UMRG Grant No. CG022-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M., Ramesh, S., Bang, L.T. et al. Effect of Copper Oxide and Manganese Oxide on Properties and Low Temperature Degradation of Sintered Y-TZP Ceramic. J. of Materi Eng and Perform 23, 4328–4335 (2014). https://doi.org/10.1007/s11665-014-1231-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1231-1

Keywords

Navigation