Skip to main content
Log in

Computational Study of Axial Fatigue for Peripheral Nitinol Stents

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Despite their success as primary treatment for vascular diseases, Nitinol peripheral stents are still affected by complications related to fatigue failure. Hip and knee movements during daily activities produce large and cyclic deformations of the superficial femoral artery, that concomitant to the effects of pulsatile blood pressure, may cause fatigue failure in the stent. Fatigue failure typically occurs in cases of very extended lesions, which often require the use of two or more overlapping stents. In this study, finite element models were used to study the fatigue behavior of Nitinol stents when subjected to cyclic axial compression in different conditions. A specific commercial Nitinol stent was chosen for the analysis and subjected to cyclic axial compression typical of the femoral vascular region. Three different configurations were investigated: stent alone, stent deployed in a tube, and two overlapping stents deployed in a tube. Results confirm that stent oversizing has an influence in determining both the mean and amplitude strains induced in the stent and plays an important role in determining the fatigue response of Nitinol stents. In case of overlapping stents, numerical results suggest higher amplitude strains concentrate in the region close to the overlapping portion where the abrupt change in stiffness causes higher cyclic compression. These findings help to explain the high incidence of stent fractures observed in various clinical trials located close to the overlapping portion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Dick, H. Wallner, S. Sabeti, C. Loewe, W. Mlekusch, J. Lammer, R. Koppensteiner, E. Minar, and M. Schillinger, Balloon Angioplasty Versus Stenting with Nitinol Stents in Intermediate Length Superficial Femoral Artery Lesions, Catheter. Cardiovasc. Interv., 2009, 74, p 1090–1095

    Article  Google Scholar 

  2. J.M. Gibbs, S.P. Costantino, and J. Benenati, Treating the Diseased Superficial Femoral Artery, Tech. Vasc. Interv. Radiol., 2010, 13, p 37–42

    Article  Google Scholar 

  3. H. Krankenberg, M. Schlüter, H. Steinkamp, K. Bürgelin, D. Scheinert, K.L. Schulte, E. Minar, P. Peeters, M. Bosiers, G. Tepe, B. Reimers, F. Mahler, T. Tübler, and T. Zeller, Nitinol Stent Implantation Versus Percutaneous Transluminal Angioplasty in Superficial Femoral Artery Lesions up to 10 cm in Length: The Femoral Artery Stenting Trial (FAST), Circulation, 2007, 116(3), p 285–292

    Article  Google Scholar 

  4. J.R. Laird, B.T. Katzen, D. Scheinert, J. Lammer, J. Carpenter, M. Buchbinder, R. Dave, G. Ansel, A. Lansky, E. Cristea, T.J. Collins, J. Goldstein, and M.R. Jaff, Nitinol Stent Implantation Versus Balloon Angioplasty for Lesions in the Superficial Femoral Artery and Proximal Popliteal Artery. Twelve-Month Results from the RESILIENT Randomized Trial, Circ. Cardiovasc. Interv., 2010, 3(3), p 267–276

    Article  Google Scholar 

  5. M.W. Mewissen, Primary Nitinol Stenting for Femoropopliteal Disease, J. Endovasc. Ther., 2009, 16(2), p 1163–1181

    Google Scholar 

  6. M. Schillinger, S. Sabeti, P. Dick, J. Amighi, W. Mlekusch, O. Schlager, C. Loewe, M. Cejna, J. Lammer, and E. Minar, Sustained Benefit at 2 Years of Primary Femoropopliteal Stenting Compared with Balloon Angioplasty with Optional Stenting, Circulation, 2007, 115, p 2745–2749

    Article  Google Scholar 

  7. D.E. Allie, C.J. Hebert, and C.M. Walker, Nitinol Stent Fracture in the SFA, Endovasc. Today, 2004, 8, p 22–34

    Google Scholar 

  8. D. Scheinert, S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich, M. Ulrich, G. Biamino, and A. Schmidt, Prevalence and Clinical Impact of Stent Fractures After Femoropopliteal Stenting, J. Am. Coll. Cardiol., 2005, 45(2), p 312–315

    Article  Google Scholar 

  9. S.H. Duda, M. Bosiers, J. Lammer, D. Scheinert, T. Zeller, V. Oliva, A. Tielbeek, J. Anderson, B. Wiesinger, G. Tepe, A. Lansky, M.R. Jaff, C. Mudde, H. Tielemans, and J.P. Beregi, Drug-Eluting and Bare Nitinol Stents for the Treatment of Atherosclerotic Lesions in the Superficial Femoral Artery: Long-Term Results from the SIROCCO Trial, J. Endovasc. Ther., 2006, 13(6), p 701–710

    Article  Google Scholar 

  10. M. Bosiers, G. Torsello, H.M. Gissler, J. Ruef, S. Müller-Hülsbeck, T. Jahnke, P. Peeters, K. Daenens, J. Lammer, H. Schroë, K. Mathias, R. Koppensteiner, F. Vermassen, and D. Scheinert, Nitinol Stent Implantation in Long Superficial Femoral Artery Lesions: 12-Month Results of the DURABILITY I, Study, J. Endovasc. Ther., 2009, 16(3), p 261–269

    Article  Google Scholar 

  11. O. Iida, M. Uematsu, Y. Soga, K. Hirano, K. Suzuki, H. Yokoi, T. Muramatsu, N. Inoue, S. Nanto, and S. Nagata, Timing of the Restenosis Following Nitinol Stenting in the Superficial Femoral Artery and the Factors Associated with Early and Late Restenosis, Catheter Cardiovasc. Interv., 2011, 78(4), p 611–617

    Article  Google Scholar 

  12. K.L. Schulte, S. Müller-Hülsbeck, P. Cao, J.P. Becquemin, R. Langhoff, P. Desgranges, H. Kobeiter, M. Midulla, V. Vladimir Borovicanin, D. Paunovic, and J.P. Beregi, MISAGO 1: First-In Man Clinical Trial with Misago Nitinol Stent, EuroIntervention, 2010, 5, p 687–691

    Article  Google Scholar 

  13. N. Bessias, G. Sfyroeras, and K.G. Moulakakis, Renal Artery Thrombosis Caused by Stent Fracture in a Single Kidney Patient, J. Endovasc. Ther., 2005, 12, p 516–520

    Article  Google Scholar 

  14. S. Sahin, A. Memis, M. Parildar, and I. Oran, Fracture of a Renal Artery Stent due to Mobile Kidney, Cardiovasc. Intervent. Radiol., 2005, 28, p 683–685

    Article  Google Scholar 

  15. H.B Lim, G. Hur, S.Y. Kim, Y.H. Kim, S.U. Kwon, W.R. Lee, and S.J. Cha, Coronary stent fracture: Detection with 64-Section Multidetector CT Angiography in Patients and In Vitro, Radiology, 2008, 249, p 810–819

    Article  Google Scholar 

  16. H.M. Hsiao, S. Prabhu, A. Nikanorov, and M. Razavi, Respiration Induced Kidney Motion on Cobalt-Chromium Stent Fatigue Resistance, J. Biomed. Mater. Res. B, 2009, 91B(2), p 508–516

    Article  Google Scholar 

  17. K.K. Kapnisis, D.O. Halwani, B.C. Brott, P.G. Anderson, J.E. Lemons, and A.S. Anayiotos, Stent Overlapping and Geometric Curvature Influence the Structural Integrity and Surface Characteristics of Coronary Nitinol Stents, J. Mech. Behav. Biomed., 2013, 20, p 227–236

    Article  Google Scholar 

  18. B. Smouse, A. Nikanorov, and D. La Flash, Biomechanical Forces in the Femoropopliteal Arterial Segment, Endovasc. Today, 2005, 4(6), p 60–66

    Google Scholar 

  19. L. Petrini, W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati, Fatigue Behavior Characterization of Nitinol for Peripheral Stents, Funct. Mater. Lett., 2012, 5(1),  p 1–4

    Article  Google Scholar 

  20. A. Meoli, E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati, Computational Modelling of In Vitro Set-Ups for Peripheral Self-Expanding Nitinol Stents: The Importance of Stent-Wall Interaction in the Assessment of the Fatigue Resistance, Cardiovasc. Eng. Tech., 2013, 4(4), p 474–484

    Article  Google Scholar 

  21. S.M. Harvey, Nitinol Stent Fatigue in Peripheral Artery Subjected to Pulsatile and Articulation Loading, J. Mater. Eng. Perform., 2011, 20(4-5), p 697–705

    Article  Google Scholar 

  22. C. Kleinstreuer, Z. Li, C.A. Basciano, S. Seelecke, and M.A. Farber, Computational Mechanics of Nitinol Stent Grafts, J. Biomech., 2008, 41, p 2370–2378

    Article  Google Scholar 

  23. A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barney, and S.W. Robertson, Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater., 2008, 1, p 153–164

    Article  Google Scholar 

  24. A. Nikanorov, H.B. Smouse, K. Osman, M. Bialas, S. Shrivastava, and L.B. Schwartz, Fracture of Self-Expanding Nitinol Stents Stressed In Vitro Under Simulated Intravascular Conditions, J. Vasc. Surg., 2008, 48(2), p 435–440

    Article  Google Scholar 

  25. C.P. Cheng, N.M. Wilson, R.L. Hallett, R.J. Herfkens, and C.A. Taylor, In Vivo MR Angiographic Quantification of Axial and Twisting Deformations of the Superficial Femoral Artery Resulting from Maximum Hip and Knee Flexion, J. Vasc. Interv. Radiol., 2006, 17(6), p 979–987

    Article  Google Scholar 

  26. A.J. Klein, S.J. Chen, J.C. Messenger, A.R. Hansgen, M.E. Plomondon, J.D. Carroll, and I.P. Casserly, Quantitative Assessment of the Conformational Change in the Femoropopliteal Artery with the Leg Movement, Catheter Cardiovasc. Interv., 2009, 74(5), p 787–798

    Article  Google Scholar 

  27. A. Ganguly, J. Simons, A. Schneider, B. Keck, N.R. Bennett, R.J. Herfkens, and R. Fahrig, In-Vivo Imaging of Femoral Artery Nitinol Stents for Deformation Analysis, J. Vasc. Interv. Radiol., 2011, 22(2), p 244–249

    Article  Google Scholar 

  28. S. Müller-Hülsbeck, P.J. Schäfer, N. Charalambous, H. Yagi, M. Heller, and T. Jahnke, Comparison of Second-Generation Stents for Application in the Superficial Femoral Artery: An In Vitro Evaluation Focusing on Stent Design, J. Endovasc. Ther., 2010, 17(6), p 767–776

    Article  Google Scholar 

  29. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, Mechanical Properties of Silicones for MEMS, J. Micromech. Microeng., 2008, 18(6), p 1–9

    Article  Google Scholar 

  30. A.M. Saguner, T. Traupe, L. Raber, N. Hess, Y. Banz, A.R. Saguner, N. Diehm, and O.M. Hess, Oversizing and Restenosis with Self-Expanding Stents in Iliofemoral Arteries, Cardiovasc. Interv. Radiol., 2012, 35(4), p 906–913

    Article  Google Scholar 

  31. H.Q. Zhao, A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L.B. Schwartz, Late Stent Expansion and Neointimal Proliferation of Oversized Nitinol Stents in Peripheral Arteries, Cardiovasc. Interv. Radiol., 2009, 32(4), p 720–726

    Article  Google Scholar 

  32. S.P. Lownie, D.M. Pelz, D.H. Lee, S. Men, I. Gulka, and P. Kalapos, Efficacy of Treatment of Severe Carotid Bifurcation Stenosis by Using Self-Expanding Stents Without Deliberate Use of Angioplasty Balloons, Am. J. Neuroradiol., 2005, 26(5), p 1241–1248

    Google Scholar 

  33. Z.M. Arthurs, P.D. Bishop, L.E. Feiten, M.J. Eagleton, D.G. Clair, and V.S. Kashyap, Evaluation of Peripheral Atherosclerosis: A Comparative Analysis of Angiography and Intravascular Ultrasound Imaging, J. Vasc. Surg., 2010, 51(4), p 933–938

    Article  Google Scholar 

  34. T. Zeller, Current State of Endovascular Treatment of Femoro-Popliteal Artery Disease, Vasc. Med., 2007, 12(3), p 223–234

    Article  Google Scholar 

Download references

Acknowledgments

This work is within the project “RT3S - Real Time Simulation for Safe vascular Stenting” partially funded by the European Commission under the 7th Framework Programme, GA FP7-2009-ICT-4-248801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Pennati.

Additional information

This article is an invited paper selected from presentations at the International Conference on Shape Memory and Superelastic Technologies 2013, held May 20-24, 2013, in Prague, Czech Republic, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meoli, A., Dordoni, E., Petrini, L. et al. Computational Study of Axial Fatigue for Peripheral Nitinol Stents. J. of Materi Eng and Perform 23, 2606–2613 (2014). https://doi.org/10.1007/s11665-014-0965-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0965-0

Keywords

Navigation