Skip to main content
Log in

Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The substitution of lead in the electronics industry is one of the key issues in the current drive towards ecological manufacturing. Legislation has already banned the use of lead in solders for mainstream applications (T M ≈ 220 °C), but the use of lead in the solders for high-temperature applications (>85% lead, T M ≈ 250-350 °C) is still exempt in RoHS2. The search for proper substitutes has been ongoing among solder manufacturers only for a decade without finding a viable low cost alternative and is the subject of intensive research. This article tries to map the current situation in the field of high-temperature lead-free soldering, presenting a short review of current legislation, requirements for substitute alloys, and finally it describes some existing solutions both in the field of promising new materials and new technologies. Currently, there is no drop-in replacement for lead-containing solders and therefore both the new materials and the new technologies may be viable solutions for production of reliable lead-free joints for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.B. Smith, Health and Environmental Effects of Lead and Other Commonly Used Elements in Microelectronics, Handbook of Lead-free solder technology for Microelectronic Assemblies, K.J. Puttlitz and K.A. Salter, Eds., Marcel Dekker Inc., 2004, ISBN 0-203-02148-7, p 49–81

  2. L. Zhang, S.-B. Xue, L.-L. Gao, Z. Sheng, H. Ye, Z.-X. Xiao, G. Zeng, Y. Chen, and S.-L. Yu, Development of Sn–Zn Lead-Free Solders Bearing Alloying Elements, J. Mater. Sci. Mater. Electron., 2010, 21, p 1–15. doi:10.1007/s10854-009-0014-1

    Article  Google Scholar 

  3. F.W. Gayle, G. Becka, J. Badgett, G. Whitten, T.Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. Mather, and C. Olson, High-Temperature Lead-Free Solders for Microelectronics, J. Manag., 2001, 53(6), p 17–21

    CAS  Google Scholar 

  4. T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, Zn-Al-Mg-Ga Alloys as Pb-Free Solder for Die-Attaching Use, J. Electron. Mater., 1999, 28(11), p 1172–1175

    Article  CAS  Google Scholar 

  5. M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, Zn-Al Based Alloys as Pb-Free Solders for Die Attach, J. Electron. Mater., 2002, 31(4), p 278–285

    Article  CAS  Google Scholar 

  6. J.H. Kim, S.W. Jeong, and H.M. Lee, Thermodynamics-Aided Alloy Design and Evaluation of Pb-free Solders for High-Temperature Applications, Mater. Trans., 2002, 23, p 1873–1878

    Article  Google Scholar 

  7. Z.H. Huang, P.P. Conway, E. Jung, R.C. Thomson, C.Q. Liu, T. Loeher, and M. Minkus, A Reliability Issue for Pb-Free Solder Joint Miniaturisation, J. Elec. Mater., 2006, 35(9), p 1761–1772

    Article  CAS  Google Scholar 

  8. N.S. Bosco and F.W. Zok, Strength of Joints Produced by Transient Liquid Phase Bonding in the Cu–Sn System, Acta Metall., 2005, 53, p 2019–2027

    CAS  Google Scholar 

  9. T.K. Lee, S. Zhang, C.C. Wong, A.C. Tan, and D. Hadikusuma, Interfacial Microstructures and Kinetics of Au/SnAgCu, Thin Solid Films, 2006, 504(1–2), p 441–445

    Article  CAS  Google Scholar 

  10. T.C. Chang, M.C. Wang, and M.H. Hon, Growth and Morphology of the Intermetallic Compounds Formed at the Sn-9Zn-2.5Ag/Cu Interface, J. Alloys Compd., 2005, 402(1–2), p 141–148

    Article  CAS  Google Scholar 

  11. T.C. Chang, J.W. Wang, M.C. Wang, and M.-H. Hon, Solderability of Sn-9Zn-0.5Ag-1In Lead-Free Solder on Cu Substrate: Part 1. Thermal Properties, Microstructure, Corrosion and Oxidation Resistance, J. Alloys Compd., 2006, 422(1–2), p 239–243

    Article  CAS  Google Scholar 

  12. K.-L. Lin and T.-P. Liu, The electrochemical Corrosion Behaviour of Pb-Free Al-Zn-Sn Solders in NaCl Solution, Mater. Chem. Phys., 1998, 56(2), p 171–176

    Article  CAS  Google Scholar 

  13. F. Rosalbino, E. Angelini, G. Zanicchi, and R. Marazza, Corrosion Behaviour Assessment of Lead-Free Sn-Ag-M (M = In, Bi, Cu) Solder Alloys, Mater. Chem. Phys., 2008, 109, p 386–391

    Article  CAS  Google Scholar 

  14. Z. Wang, I. Dutta, and B.S. Majumdar, Thermal Cycle Response of a Lead-Free Solder Reinforced with Adaptive Shape Memory Alloy, Mater. Sci. Eng. A, 2006, 421, p 133–142

    Article  Google Scholar 

  15. F. Gao and T. Takemoto, Mechanical Properties Evolution of Sn-3.5Ag Based Lead-Free Solders by Nanoindentation, Mater. Lett., 2006, 60(19), p 2315–2318

    Article  CAS  Google Scholar 

  16. C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, Comparison of Isothermal Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders, Mater. Sci. Eng. A, 2005, 394(1–2), p 20–27

    Google Scholar 

  17. P. Zimprich, U. Saeed, B. Weiss, and H. Ipser, Constraining Effects of Lead-Free Solder Joints During Stress Relaxation, J. Electron. Mater., 2009, 38, p 392–399

    Article  CAS  Google Scholar 

  18. Y. Plevachuk, W. Hoyer, I. Kaban, M. Köhler, and R. Novakovic, Experimental Study of Density, Surface Tension and Contact Angle of Sn–Sb Based Alloys for High Temperature Soldering, J. Mater. Sci., 2010, 45(8), p 2051–2056

    Article  CAS  Google Scholar 

  19. Y. Takaku, K. Makino, K. Watanabe, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, I. Nakagawa, T. Atsumi, and K. Ishida, Interfacial Reaction Between Zn-Al-Based High Temperature Solders and Ni Substrate, J. Electron. Mater., 2009, 38(1), p 54–60

    Article  CAS  Google Scholar 

  20. N. Kang, H.S. Na, S.J. Kim, and C.Y. Kang, Alloy Design of Zn-Al-Cu Solder for Ultra High Temperatures, J. Alloys Compd., 2009, 467(1–2), p 246–250

    Article  CAS  Google Scholar 

  21. V. Sivasubramaniam, M. Galli, J. Cugnoni, J. Janczak-Rusch, and J. Botsis, A Study of the Shear Response of a Lead-Free Composite Solder by Experimental and Homogenization Techniques, J. Electron. Mater., 2009, 38(10), p 2122–2131

    Article  CAS  Google Scholar 

  22. M. Maleki, J. Cugnoni, and J. Botsis, On the Mutual Effect of Viscoplasticity and Interfacial Damage Progression in Interfacial Fracture of Lead-Free Solder Joints, Mater. Sci. Eng. A, 2011, 40(10), p 2081–2092

    CAS  Google Scholar 

  23. V. Chidambaram, J. Hald, and J. Hattel, Development of High Melting Point Environmentally Friendly Solders Using the CALPHAD Approach, Arch. Metall. Mater., 2008, 53(4), p 1111–1118

    CAS  Google Scholar 

  24. N. Moelans, A Quantitative and Thermodynamically Consistent Phase-Field Interpolation Function for Multi-Phase Systems, Acta Mater., 2011, 59, p 1077–1086

    Article  CAS  Google Scholar 

  25. J. Wang, C. Leinenbach, and M. Roth, Thermodynamic Modeling of the Au-Ge-Sn Ternary System, J. Alloys Compd., 2009, 481, p 830–836

    Article  CAS  Google Scholar 

  26. C. Leinenbach, N. Weyrich, H.R. Elsener, and G. Gamez, Soldering of Ti to Metallized Al2O3 Using Eutectic Au-Ge Filler Alloy—Influence of Ceramic Thermal Pre-Treatment on Joint Properties, Int. J. Appl. Ceram. Technol. (accepted)

  27. H.R. Elsener, C. Leinenbach, J. Neuenschwander, P. Wurz, and D. Piazza, Fügen einer Beheizbaren Metall-Keramik-Struktur mit Eutektischem Au-Ge Lot, Proceedings of 9th Proceedings of 9th International Conference on Brazing, High Temperature Brazing and Diffusion Bonding 2010, Aachen, DVS-Berichte Band, Vol 263, p 93–97

  28. Y. Takaku, I. Ohnuma, Y. Yamada, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, and K. Ishida, A Review of High temperature Solders for Power-Semiconductor Devices: Bi-Base Composite Solder and Zn-Al base Solder, J. ASTM Int., 2011, 8(1), JAI103042

  29. K. Suganuma, K.-S. Kim, S.-S. Kim, D.-S. Kim, M. Kang, and S.-J. Kim, Joining Characteristics of Various High Temperature Lead-Free Interconnection Materials, Proceedings of the Electronic Components and Technology Conference, 2009, art. no. 5074255, p 1764–1768

  30. S. Kim, K.-S. Kim, S.-S. Kim, K. Suganuma, and G. Izuta, Improving the Reliability of Si Die Attachment with Zn-Sn-Based High-Temperature Pb-Free Solder Using a TiN Diffusion Barrier, J. Electron. Mater., 2009, 38(12), p 2668–2675

    Article  CAS  Google Scholar 

  31. S. Kim, K.-S. Kim, S.-S. Kim, and K. Suganuma, Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders, J. Electron. Mater., 2009, 38(2), p 266–272

    Article  CAS  Google Scholar 

  32. G. Wnuk and M. Zielińska, Microstructural and Thermal Analysis of Cu-Ni-Sn-Zn Alloys by Means of SEM and DSC Techniques, Arch. Mater. Sci. Eng., 2009, 40(1), p 27–32

    Google Scholar 

  33. G. Meng and Z. Li, Shear Strength and Fracture Surface Analysis of BiAgNiCuGe/Cu Joint, Trans. China Weld. Inst., 2009, 30(10), p 45–48 (in Chinese)

    CAS  Google Scholar 

  34. Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, and X. Li, Investigation of Rare Earth-Doped BiAg High-Temperature Solders, J. Mater. Sci. Mater. Electron., 2009, 21(9), p 875–881

    Article  Google Scholar 

  35. Y. Yan, L. Feng, X. Guo, K. Tang, and K. Song, Effect of the Content of Cu on Solderability and Mechanical Properties of Bi5Sb Solder Alloy, Mater. Sci. Forum, 2009, 610–613, p 537–541

    Article  Google Scholar 

  36. J.-M. Song and H.-Y. Chuang, Faceting Behavior of Primary Ag in Bi-Ag Alloys for High Temperature Soldering Applications, Mater. Trans., 2009, 50(7), p 1902–1904

    Article  CAS  Google Scholar 

  37. C. Leinenbach, F. Valenza, D. Giuranno, H.R. Elsener, S. Jin, and R. Novakovic, Wetting and Soldering Behaviour of Eutectic Au-Ge Alloy on Cu and Ni Substrates, J. Electron. Mater., 2011, 40(7), p 1533–1541

    Article  CAS  Google Scholar 

  38. J. Wang, S. Jin, C. Leinenbach, and A. Jacot, Thermodynamic Assessment of the Cu-Ge System, J. Alloys Compd., 2010, 504, p 159–165

    Article  CAS  Google Scholar 

  39. J. Wang, C. Leinenbach, and M. Roth, Thermodynamic Assessment of the Au-Ge-Sb System, J. Alloys Compd., 2009, 485, p 577–582

    Article  CAS  Google Scholar 

  40. V. Chidambaram, J. Hattel, and J. Hald, Design of Lead-Free Candidate Alloys for High-Temperature Soldering Based on Au-Sn Alloys, Mater. Des., 2010, 31, p 4638–4645

    Article  CAS  Google Scholar 

  41. V. Chidambaram, J. Hald, and J. Hattel, Development of Au-Ge Based Candidate Alloys as an Alternative to High-Lead Content Solders, J. Alloys Compd., 2010, 490, p 170–179

    Article  CAS  Google Scholar 

  42. K. Suganuma, S.-J. Kim, and K.-S. Kim, High Temperature Lead-Free Solders: Properties and Possibilities, J. Manag., 2009, 61(1), p 64–71

    CAS  Google Scholar 

  43. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273–312

    Article  CAS  Google Scholar 

  44. R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson, and S.M. Martin, MTDATA—Thermodynamics and Phase Equilibrium Software from the National Physical Laboratory, CALPHAD, 2002, 26, p 229–271

    Article  CAS  Google Scholar 

  45. S.-L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.-Y. Yan, F.-Y. Xie, R. Schmid-Fetzer, and W.A. Oates, The PANDAT Software Package and its Applications, CALPHAD, 2002, 26, p 175–188

    Article  CAS  Google Scholar 

  46. FactSage, CRCT—Centre de Recherche en Calcul Thermochimique/Centre for Research in Computational Thermochemistry and GTT-Technologies, http://www.factsage.com/

  47. N. Saunders and A.P. Miodownik, CALPHAD (A Comprehensive Guide), Pergamon Press, Oxford, 1998

    Google Scholar 

  48. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics—The Calphad Method, Cambridge University Press, Cambridge, 2007

    Book  Google Scholar 

  49. R. Schmid-Fetzer, D. Anderson, P.Y. Chevalier, L. Eleno, O. Fabrichnaya, U.R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, and M. Zinkewich, Assessment Techniques, Database Design and Software Facilities for Thermodynamics and Diffusion, CALPHAD, 2007, 31, p 38–52

    Article  CAS  Google Scholar 

  50. A. Dinsdale, A. Watson, A. Kroupa, J. Vrestal, A. Zemanova, and P. Broz, Lead-free Solders: Materials Reliability for Electronics, K.N. Subramanian, Ed., Wiley, 2012

  51. A.T. Dinsdale, A. Watson, A. Kroupa, J. Vrestal, A. Zemanova, and J. Vizdal, Version 3.0 of the SOLDERS Database for Lead Free Solders, http://resource.npl.co.uk/mtdata/soldersdatabase.htm

  52. ADAMIS, Alloy Database for Micro-Solders, http://www.materials-design.co.jp/adamis/adamisE.pdf

  53. T.G. Lei, J.N. Calata, G.-Q. Lu, X. Chen, and S. Luo, Low-Temperature Sintering of Nanoscale Silver Paste for Attaching Large-Area (>100 mm2) Chips, IEEE Trans. Compon. Packag. Technol., 2010, 33(1), p 98–104

    Article  CAS  Google Scholar 

  54. A. Hirose, H. Tatsumi, N. Takeda, Y. Akada, T. Ogura, E. Ide, and T. Morita, A Novel Metal-to-Metal Bonding Process Through In-Situ Formation of Ag NANOPARTICLES USING Ag2O Microparticles, J. Phys. Conf. Ser., 2009, 165, art. no. 012045

  55. J. Janczak-Rusch, Research Approach Towards Knowledge Based Design of Lead Free Solder Joints, 3rd WUT-NIMS—Empa Workshop: New trends in Nanomaterials Design and Engineering, September 9–10, 2010, Dübendorf, Switzerland

  56. J.N. Calata, T.G. Lei, and G.-Q. Lu, Sintered Nanosilver Paste for High-Temperature Power Semiconductor Device Attachment, Int. J. Mater. Product Technol., 2009, 34(1–2), p 95–110

    Article  CAS  Google Scholar 

  57. K. Suganuma, K.S. Kim, S.S. Kim, D.S. Kim, M. Kang, and S.J. Kim, Joining Characteristics of Various High Temperature Lead-Free Interconnection Materials, Proceedings of the Electronic Components and Technology Conference, 2009, art. no. 5074255, p 1764–1768

  58. L. Dupont, G. Coquery, K. Kriegel, and A. Melkonyan, Accelerated Active Ageing Test on SiC JFETs Power Module with Silver Joining Technology for High Temperature Application, Microelectron. Reliab., 2009, 49(9–11), p 1375–1380

    Article  CAS  Google Scholar 

  59. P.J. Wang and C.C. Lee, Silver Joints Between Silicon Chips and Copper Substrates Made by Direct Bonding at Low-Temperature, IEEE Trans. Compon. Packag. Technol., 2010, 33(1), p 10–15

    Article  Google Scholar 

  60. W.-M. Liu, M.-X. Chen, and S. Liu, Ceramic Packaging by Localized Induction Heating, Nanotechnol. Precis. Eng., 2009, 7(4), p 365–369 (in Chinese)

    Google Scholar 

  61. P.P. Conway, E.K.Y. Fu, and K. Willaims, Presicion Hightemperature Lead-Free Solders Interconnections by Means of High-Energy Droplet Deposition Technique, CIRP Ann. Manuf. Technol., 2002, 51(1), p 177–180

    Article  Google Scholar 

  62. T. Takahashi, S. Komatsu, and T. Kono, Development of Ag3Sn Intermetallic Compound Joint for Power Semiconductor Devices, Electrochem. Solid-State Lett., 2009, 12(7), p H263–H265

    Article  CAS  Google Scholar 

  63. T. Takahashi, S. Komatsu, and T. Kono, Properties of Intermetallic Compound Joint Made from Evaporated Ag/Cu/Sn Films, MRS Symposium Proceedings, Conference: Symposium V on Materials, Devices, and Characterization for Smart Systems held at the 2008 MRS Fall Meeting Location: Boston, MA, 2008, Book Series: Materials Research Society Symposium Proceedings, J. Su, L.P. Wang, Y. Furuya, et al. Eds., 2009, Vol 1129, p 335–340

  64. K.K.Sosnowska, M. Pawelkiewicz, J. Janczak-Rusch, and R. Spolenak, Accelerating Transient Liquid Phase Bonding in Cu-Sn Interconnects, Acta Mater. (submitted)

  65. A. Kodentsov, On the Merits of Transient Liquid Phase Bonding as a Substitute for Soldering with High-Pb Alloys, TMS 2010, Presented at 139th Annual Meeting, February, 14-18, Seattle, USA

  66. T. Osborn, N. Galiba, and P.A. Kohl, Electroless Copper Deposition with PEG Suppression for All-Copper Flip-Chip Connections, J. Electrochem. Soc., 2009, 156(7), p D226–D230

    Article  CAS  Google Scholar 

  67. J. Fjelstad; Solderless Assembly of Electronic Products—A More Reliable and more Cost Effective Approach to Electronics Manufacturing? 5th IEEE Vehicle Power and Propulsion Conference, VPPC ‘09, 2009, art. no. 5289876, p 11–16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ales Kroupa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroupa, A., Andersson, D., Hoo, N. et al. Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering. J. of Materi Eng and Perform 21, 629–637 (2012). https://doi.org/10.1007/s11665-012-0125-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0125-3

Keywords

Navigation