Skip to main content
Log in

Magnetic Properties and Magnetocaloric Effect in Tb2FeCrO6 Double Perovskite Oxide

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we fabricated a polycrystalline Tb2FeCrO6 double perovskite (DP) oxide by a solid-state reaction method and determined its structural, magnetic, and magnetocaloric (MC) properties. The Tb2FeCrO6 DP oxide was found to crystallize in a DP-type structure with the Pbnm space group and to undergo a paramagnetic-to-antiferromagnetic transition at a temperature of ~ 8.5 K. A large low-temperature MC effect was observed in the Tb2FeCrO6 DP oxide. The MC parameters in terms of maximum magnetic entropy changes, temperature-averaged entropy change (5 K), and relative cooling power for Tb2FeCrO6 DP oxide under a magnetic field change of 0–7 T were 12.9 J/kg K, 12.7 J/kg K, and 341.4 J/kg, respectively. These parameters were consistent with similarly high levels in recently updated MC materials, making the material a suitable candidate for low-temperature magnetic cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019).

    Article  Google Scholar 

  2. J.Y. Law, L.M. Moreno-Ramírez, Á. Díaz-García, and V. Franco, Current perspective in magnetocaloric materials research. J. Appl. Phys. 133, 040903 (2023).

    Article  CAS  Google Scholar 

  3. Y.K. Zhang, W.X. Hao, C.L. Hu, X. Wang, X.F. Zhang, and L.W. Li, Rare-earth-free Mn30Fe20xCuxAl50 magnetocaloric materials with stable cubic CsCl-type structure for room-temperature refrigeration. Adv. Funct. Mater. 33, 2310047 (2023).

    Article  CAS  Google Scholar 

  4. D.Y. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, and Y.D. Wang, Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti Alloys. Phys. Rev. Lett. 122, 255703 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. B. Li, Y. Kawakita, S. Ohira-Kawamura, T. Sugahara, H. Wang, J. Wang, Y. Chen, S.I. Kawaguchi, S. Kawaguchi, K. Ohara, K. Li, D. Yu, R. Mole, T. Hattori, T. Kikuchi, S. Yano, Z. Zhang, Z. Zhang, W. Ren, S. Lin, O. Sakata, K. Nakajima, and Z.D. Zhang, Colossal barocaloric effects in plastic crystals. Nature 567, 506 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. J.C. Lin, P. Tong, X.K. Zhang, Z.C. Wang, Z. Zhang, B. Li, G.H. Zhong, J. Chen, Y.D. Wu, H.L. Lu, L.H. He, B. Bai, L.S. Lin, W.H. Song, Z.D. Zhang, and Y.P. Sun, Giant room-temperature barocaloric effect at the electronic phase transition in Ni1−xFexS. Mater. Horiz. 7, 2690 (2020).

    Article  CAS  Google Scholar 

  7. J. Lin, P. Tong, K. Zhang, W. Lu, X. Wang, X. Zhang, W. Song, and Y. Sun, Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes. Nat. Commun. 12, 596 (2022).

    Article  Google Scholar 

  8. Z.P. Ma, X.S. Dong, Z.Q. Zhang, and L.W. Li, Achievement of promising cryogenic magnetocaloric performances in La1xPrxFe12B6 compounds. J. Mater. Sci. Technol. 92, 138–142 (2021).

    Article  CAS  Google Scholar 

  9. J.Y. Law, and V. Franco, Pushing the limits of magnetocaloric high-entropy alloys. APL Mater. 9, 080702 (2021).

    Article  CAS  Google Scholar 

  10. Q. Shen, I. Batashev, F. Zhang, H. Ojiyed, I. Dugulan, N. van Dijk, and E. Brück, Exploring the negative thermal expansion and magnetocaloric effect in Fe2(Hf, Ti) Laves phase materials. Acta Mater. 257, 119149 (2023).

    Article  CAS  Google Scholar 

  11. Y.K. Zhang, P. Xu, J. Zhu, S.M. Yan, J.C. Zhang, and L.W. Li, The emergence of considerable room temperature magnetocaloric performances in the transition metal high-entropy alloys. Mater. Today Phys. 32, 101031 (2023).

    Article  CAS  Google Scholar 

  12. G. Yao, B. Liu, Q. Wang, W. Cui, and S. Yang, Magnetic transition and magnetocaloric effect of Gd (Ga, X) (X = Al, Si) alloys. J. Electron. Mater. 5, 23742 (2023).

    Google Scholar 

  13. Z. Guan, J. Bai, Y. Zhang, J. Gu, N. Morley, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Ni-Co-Mn-Ti-B high performance multiferroic phase transformation material: simultaneous modulation of mechanical properties and successive caloric effects by B doping. Mater. Today Phys. 36, 101183 (2023).

    Article  CAS  Google Scholar 

  14. Y.K. Zhang, W.X. Hao, J. Shen, Z. Mo, T. Gottschall, and L.W. Li, Investigation of the structural and magnetic properties in the GdCoC compound featuring excellent cryogenic magnetocaloric performances. Acta Mater. (2024), in press.

  15. Y. Zhang, B. Wu, D. Guo, J. Wang, and Z. Ren, Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons. Chin. Phys. B 30, 017501 (2021).

    Article  CAS  Google Scholar 

  16. W. Zhang, Z. Xie, Z. Zou, X. Jiang, C. Xu, and M. Feng, Eu/Ni doping on the structure, magnetocaloric effect and critical behaviour of La0.65Sr0.35MnO3 ceramics. Ceram. Int. 50, 4291 (2024).

    Google Scholar 

  17. X. Jiang, Z. Zou, B. He, W. Zhang, and Z. Mao, Large magnetocaloric effect of Sm3+-doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) manganites near room temperature. J. Electron. Mater. 52, 4587 (2023).

    Article  CAS  Google Scholar 

  18. L.W. Li, and M. Yan, Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. J. Alloy. Compd. 823, 153810 (2020).

    Article  CAS  Google Scholar 

  19. J.W. Xu, X.Q. Zheng, L. Xi, X. Kan, B. Bao, T. Ma, Y. Zang, D. Wang, Y. Gao, J. Xu, W. Yin, B.G. Shen, and S.G. Wang, Significant enhancement of magnetocaloric effects via tuning Curie temperature and magnetic anisotropy in rare-earth based compounds. Appl. Mater. Today 35, 101982 (2023).

    Article  Google Scholar 

  20. Y.K. Zhang, J.Y. Ying, X.Q. Gao, Z.J. Mo, J. Shen, and L.W. Li, Exploration of the rare-earth cobalt nickel-based magnetocaloric materials for hydrogen liquefaction. J. Mater. Sci. Technol. 159, 163 (2023).

    Article  CAS  Google Scholar 

  21. Z. Ma, P. Xu, J. Ying, Y. Zhang, and L. Li, Insight into the structural and magnetic properties of RECo12B6 (RE = Ce, Pr, Nd) compounds: a combined experimental and theoretical investigation. Acta Mater. 247, 118757 (2023).

    Article  CAS  Google Scholar 

  22. X. Wang, L.F. Wang, N.L. Gulay, L.W. Li, and R. Pottgen, Magnetic phase transition and magnetocaloric effect of RE2RuIn (RE = Dy, Ho, Er, Tm). J. Magn. Magn. Mater. 589, 171406 (2024).

    Article  CAS  Google Scholar 

  23. Y.K. Zhang, N.Z. He, Z.Q. Zhang, and X. Wang, Structural, magnetic and magnetocaloric properties of the rare earth (RE) molybdate RE2MoO6 (RE = Dy, Tb and Gd) oxides. Ceram. Int. 483, 1672 (2022).

    Google Scholar 

  24. N. He, P. Wang, J. Huang, X. Wang, Y. Zhang, L. Hu, L. Li, and M. Yan, Structural, magnetic and magnetocaloric properties in the rare earth ruthenate RE3RuO7 (RE = Pr, Nd, Gd and Tb) oxides with fluorite related structure. Ceram. Int. 48, 36968 (2022).

    Article  CAS  Google Scholar 

  25. X. Wang, Y. Ma, and Z. Zhang, Magnetic properties and magnetocaloric effect (MCE) in the rare-earths (RE) based RECu2Si2 (RE = Nd and Pr) compounds. Solid State Commun. 345, 114696 (2022).

    Article  CAS  Google Scholar 

  26. X. Wang, Y. Ma, and Z. Zhang, Structural and cryogenic magnetic properties of the ternary RECu2Ge2 (RE = Pr and Nd) compounds. J. Electron. Mater. 51, 5664 (2022).

    Article  CAS  Google Scholar 

  27. P. Xu, X. Jin, R. Xing, J. Zhao, and L. Li, Magnetic and magnetocaloric properties in Sr2RETaO6 (RE = Dy, Ho, and Er) compounds. J. Electro. Mater. 51, 6525 (2022).

    Article  CAS  Google Scholar 

  28. A. Hossain, P. Bandyopadhyay, and S. Roy, An overview of double perovskites A2B′B″O6 with small ions at A site: synthesis, structure and magnetic properties. J. Alloy. Compd. 740, 414 (2018).

    Article  CAS  Google Scholar 

  29. W.J. Yin, B.C. Weng, J. Ge, Q.D. Sun, Z.Z. Li, and Y.F. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12, 442 (2019).

    Article  CAS  Google Scholar 

  30. P. Xu, Z.P. Ma, P. Wang, H. Wang, and L.W. Li, Excellent cryogenic magnetocaloric performances in ferromagnetic Sr2GdNbO6 double perovskite compound. Mater. Today Phys. 20, 100470 (2021).

    Article  CAS  Google Scholar 

  31. L.W. Li, and M. Yan, Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. J. Mater. Sci. Technol. 136, 1–12 (2023).

    Article  CAS  Google Scholar 

  32. Y.K. Zhang, B. Zhang, S. Li, J. Zhu, B. Wu, J. Wang, and Z. Ren, Cryogenic magnetic properties and magnetocaloric effects (MCE) in B-site disordered RE2CuMnO6 (RE = Gd, Dy, Ho and Er) double perovskites (DP) compounds. Ceram. Int. 47, 18205 (2021).

    Article  CAS  Google Scholar 

  33. B.B. Wu, Y.K. Zhang, D. Guo, J. Wang, and Z. Ren, Structure, magnetic properties and cryogenic magneto-caloric effect (MCE) in RE2FeAlO6 (RE = Gd, Dy, Ho) oxides. Ceram. Int. 46, 6290 (2021).

    Article  Google Scholar 

  34. B. Wu, D. Guo, Y. Wang, and Y. Zhang, Crystal structure, magnetic properties, and magnetocaloric effect in B-site disordered RE2CrMnO6 (RE = Ho and Er) perovskites. Ceram. Int. 46, 11988–11993 (2020).

    Article  CAS  Google Scholar 

  35. Y.K. Zhang, Y. Tian, Z. Zhang, Y. Jia, S. Li, B. Zhang, J. Wang, and Z. Ren, Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Mater. 226, 117669 (2022).

    Article  CAS  Google Scholar 

  36. Z. Zhang, P. Xu, Y. Jia, and L. Li, Structural, magnetic and magnetocaloric properties in distorted RE2NiTiO6 double perovskite compounds. J. Phys. Energy 5, 014017 (2023).

    Article  Google Scholar 

  37. Z.Q. Dong, and S. Yin, Structural, magnetic and magnetocaloric properties in perovskite RE2FeCoO6 (RE = Er and Gd) compounds. Ceram. Int. 46, 1099–1103 (2020).

    Article  Google Scholar 

  38. L. Li, P. Xu, S. Ye, Y. Li, G. Liu, D. Huo, and M. Yan, Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites. Acta Mater. 194, 354–365 (2020).

    Article  CAS  Google Scholar 

  39. Y.K. Zhang, J. Zhu, S. Li, Z.Q. Zhang, J. Wang, and Z.M. Ren, Magnetic properties and promising cryogenic magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Sci. China Mater. 65, 1345–1352 (2022).

    Article  CAS  Google Scholar 

  40. Y. Zhang, J. Zhu, S. Li, J. Wang, and Z.M. Ren, Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. J. Mater. Sci. Technol. 102, 66–71 (2022).

    Article  CAS  Google Scholar 

  41. Y.K. Zhang, S. Li, L. Hu, X.H. Wang, L. Li, and M. Yan, Excellent magnetocaloric performance in the carbide compounds RE2Cr2C3 (RE = Er, Ho, and Dy) and their composites. Mater. Today Phys. 27, 100786 (2022).

    Article  CAS  Google Scholar 

  42. J. Rodriguez-Carvajal, FULLPROF: a Rietveld and pattern matching analysis program. Laboratoire Leon Brillouin CEA-CNRS, France (2007).

  43. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964).

    Article  Google Scholar 

  44. V. Franco, and A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465 (2010).

    Article  CAS  Google Scholar 

  45. L.D. Griffith, Y. Mudryk, J. Slaughter, and V.K. Pecharsky, Material-based figure of merit for caloric materials. J. Appl. Phys. 123, 034902 (2018).

    Article  Google Scholar 

  46. D. Guo, L.M.M. Ramírez, J.Y. Law, Y.K. Zhang, and V. Franco, Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho or Er) compounds. Sci. China Mater. 66, 249 (2023).

    Article  CAS  Google Scholar 

  47. X. Wang, Z. Ma, Z. Zhang, and Y. Zhang, Magnetic properties and cryogenic magneto-caloric effect in the antiferromagnetic REFe2Si2 (RE = Dy and Tb) compounds. Appl. Phys. A 128, 898 (2022).

    Article  CAS  Google Scholar 

  48. P. Xu, L. Hu, Z. Zhang, H. Wang, and L.W. Li, Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (RE = Gd, Dy, Ho, and Er) compounds. Acta Mater. 236, 118114 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Lin, J., Shu, Y. et al. Magnetic Properties and Magnetocaloric Effect in Tb2FeCrO6 Double Perovskite Oxide. J. Electron. Mater. 53, 2302–2308 (2024). https://doi.org/10.1007/s11664-024-10993-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10993-2

Keywords

Navigation