Skip to main content
Log in

Field Emission Properties of Top–Down GaN Nanowires Characterized in Vacuum by a Nanometer-Resolution Piezoelectric Probing System

  • Topical Collection: 65th Electronic Materials Conference 2023
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium nitride (GaN) nanowire (NW) vacuum field emission (FE) devices are promising candidates for next generation devices, as they are expected to combine the advantageous features of solid-state devices with those of vacuum electronics. The performance of these devices relies on NW formation with well-defined cylindrical shape and minimum surface damage, while their accurate evaluation requires nanometer-resolution probing. To address the latter, top–down GaN NW FE devices with an integrated leveling structure were fabricated and their characteristics are reported. A custom-made vacuum characterization system with a 1-mm-diameter cylindrical piezoelectrically actuated probe with nanometer-resolution, served as the anode of the FE device, in the characterization system used for studying the GaN NW FE devices. The fabricated FE devices exhibited a maximum current density of ~ 1.0 A/cm2 and a turn-on voltage of ~ 85 V, using a total number of 22,500 NWs with 160 nm diameter and a ~ 2-μm anode to NW separation distance. Further improvement of the technology could enable the exploitation of the piezoelectric system for probing with nanometer-scale vertical resolution FE devices with closely spaced anode to cathode configurations. This characterization system and the proposed process flow can also be adopted for the nanometer-resolution piezoelectric probing of different semiconductor NW materials, providing an easy and cost-effective way of FE measurements of vertical NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.F. Brinkman, D.E. Haggan, and W.W. Troutman, A history of the invention of the transistor and where it will lead us. IEEE J. Solid-State Circuits 32, 1858 (1997).

    Article  Google Scholar 

  2. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., (New Jersey: Wiley, 2006).

    Book  Google Scholar 

  3. J.-W. Han, J.S. Oh, and M. Meyyappan, Vacuum nanoelectronics: Back to the future?—Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100, 213505 (2012).

    Article  Google Scholar 

  4. J.-W. Han, J.S. Oh, and M. Meyyappan, Cofabrication of vacuum field emission transistor (VFET) and MOSFET. IEEE Trans. Nanotechnol. 13, 464 (2014).

    Article  CAS  Google Scholar 

  5. G. Doundoulakis, A. Adikimenakis, A. Stavrinidis, K. Tsagaraki, M. Androulidaki, G. Deligeorgis, G. Konstantinidis, and A. Georgakilas, Experimental and modeling insight for fin-shaped transistors based on AlN/GaN/AlN double barrier heterostructure. Solid-State Electron. 158, 1 (2019).

    Article  CAS  Google Scholar 

  6. Y. Li, F. Qian, J. Xiang, and C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006).

    Article  CAS  Google Scholar 

  7. G. Doundoulakis, A. Adikimenakis, A. Stavrinidis, K. Tsagaraki, M. Androulidaki, F. Iacovella, G. Deligeorgis, G. Konstantinidis, and A. Georgakilas, Nanofabrication of normally-off GaN vertical nanowire MESFETs. Nanotechnology 30, 285304 (2019).

    Article  CAS  Google Scholar 

  8. C. Zhou, A. Ghods, V.G. Saravade, P.V. Patel, K.L. Yunghans, C. Ferguson, Y. Feng, B. Kucukgok, N. Lu, and I.T. Ferguson, Review—The current and emerging applications of the III-nitrides. ECS J. Solid State Sci. Technol. 6, Q149 (2017).

    Article  CAS  Google Scholar 

  9. N. Chowdhury, G. Iannaccone, G. Fiori, D.A. Antoniadis, and T. Palacios, GaN nanowire n-MOSFET with 5 nm channel length for applications in digital electronics. IEEE Electron Device Lett. 38, 859 (2017).

    Article  CAS  Google Scholar 

  10. A. Evtukh, H. Hartnagel, O. Yilmazoglu, H. Mimura, and D. Pavlidis, Vacuum Nanoelectronic Devices: Novel Electron Sources and Applications, 1st ed., (United Kingdom: Wiley, 2015).

    Book  Google Scholar 

  11. S. Ghotbi and S. Mohammadi, Close-packed silicon field emitter arrays with integrated anode fabricated by electron-beam lithography. J. Vac. Sci. Technol. B 41, 013202 (2023).

    Article  CAS  Google Scholar 

  12. L. Wang, F. Gao, S. Chen, C. Li, and W. Yang, Nanowire-density-dependent field emission of n-type 3C-SiC nanoarrays. Appl. Phys. Lett. 107, 122108 (2015).

    Article  Google Scholar 

  13. G. Doundoulakis and D. Pavlidis, Electrical characteristics of vertical GaN nanowire vacuum field emitter devices. IEEE Trans. Electron Devices 68, 3034 (2021).

    Article  CAS  Google Scholar 

  14. Z. Niu, M. Zhu, and E. Bellotti, Three-dimensional Monte Carlo simulation of silicon field emitters. IEEE Trans. Electron Devices 70, 4379 (2023).

    Article  CAS  Google Scholar 

  15. A. Evtukh, O. Yilmazoglu, V. Litovchenko, V. Ievtukh, H.L. Hartnagel, and D. Pavlidis, GaN surface electron field emission efficiency enhancement by low-energy photon illumination. J. Vac. Sci. Technol. B 30, 022206 (2012).

    Article  Google Scholar 

  16. R.D. Underwood, S. Keller, U.K. Mishra, D. Kapolnek, B.P. Keller, and S.P. DenBaars, GaN field emitter array diode with integrated anode. J. Vac. Sci. Technol. B 16, 822 (1998).

    Article  CAS  Google Scholar 

  17. J.-M. Bonard, K.A. Dean, B.F. Coll, and C. Klinke, Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89, 197602 (2002).

    Article  Google Scholar 

  18. P.-C. Shih, G. Rughoobur, K. Cheng, A.I. Akinwande, and T. Palacios, Self-align-gated GaN field emitter arrays sharpened by a digital etching process. IEEE Electron Device Lett. 42, 422 (2021).

    Article  CAS  Google Scholar 

  19. R.H. Fowler and L. Nordheim, Electron emission in intense electric fields Proc. R. Soc. Lond. Math. Phys. Sci. 119, 173 (1928).

    CAS  Google Scholar 

  20. R.G. Forbes and J.H.B. Deane, Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission. Proc. Roy. Soc. Math. Phys. Eng. Sci. 463, 2907 (2007).

    Google Scholar 

Download references

Acknowledgments

The AFOSR support through the “Field Emitter Robust Vacuum Integrated Nanoelectronics (FERVIN)” award FA9550-19-1-0349, and the “DURIP: Variable Temperature 7-Stage Microprobe System with a Piezoelectric Stage for FE Measurements” award FA9550-21-1-0444, is greatly acknowledged.

Funding

The funding was provided by AFOSR, (FA9550-19-1-0349) (FA9550-21-1-0444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Doundoulakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doundoulakis, G., Pavlidis, D. Field Emission Properties of Top–Down GaN Nanowires Characterized in Vacuum by a Nanometer-Resolution Piezoelectric Probing System. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-023-10894-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-023-10894-w

Keywords

Navigation