Skip to main content
Log in

Reducing the gate current in vacuum channel field-emission transistors using a finger gate

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A nanofinger gate vacuum field-emission transistor with a vertical channel (FGVFET) is proposed herein. The reduction of the gate leakage current is investigated to obtain an optimum structure. The proposed three-terminal metal–insulator–metal device with a 43-nm vertical vacuum channel is capable of operating in air ambient and provides a high anode drive current (101 µA), while both the gate and anode voltages are small at about 5 V. Meanwhile, the gate leakage current of the FGVFET is reduced by about sevenfold compared with conventional structures. Also, this vacuum transistor exhibits a low threshold voltage (0.55 V) that is comparable to modern solid-state devices. As a result, a significant cutoff frequency (fT) of 1.13 THz is obtained. Other electrical characteristics of the FGVFET, such as the on–off current ratio and transconductance, are also calculated. The introduced modification could be applied to other vacuum vertical-channel transistors to provide a new class of high-speed low-power transistors for digital applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Trucchi, D.M., Melosh, N.A.: Electron-emission materials: advances, applications, and models. MRS Bull. 42, 488–492 (2017). https://doi.org/10.1557/mrs.2017.142

    Article  Google Scholar 

  2. Kim, H.K.: Vacuum transistors for space travel. Nat. Electron. 2, 374–375 (2019). https://doi.org/10.1038/s41928-019-0306-2

    Article  Google Scholar 

  3. Gaertner, G.: Historical development and future trends of vacuum electronics. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30, 060801 (2012). https://doi.org/10.1116/1.4747705

    Article  Google Scholar 

  4. Stoner, B.R., Glass, J.T.: Nothing is like a vacuum. Nat. Nanotechnol. 7, 485–487 (2012). https://doi.org/10.1038/nnano.2012.130

    Article  Google Scholar 

  5. Booske, J.H., Dobbs, R.J., Joye, C.D., Kory, C.L., Neil, G.R., Park, G.-S., Park, J., Temkin, R.J.: Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 1, 54–75 (2011). https://doi.org/10.1109/TTHZ.2011.2151610

    Article  Google Scholar 

  6. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M.C., Knox, W.H.: Femtosecond high-field transport in compound semiconductors. Phys. Rev. B. 61, 16642–16652 (2000). https://doi.org/10.1103/PhysRevB.61.16642

    Article  Google Scholar 

  7. Srisonphan, S., Jung, Y.S., Kim, H.K.: Metal-oxide-semiconductor field-effect transistor with a vacuum channel. Nat. Nanotechnol. 7, 504–508 (2012). https://doi.org/10.1038/nnano.2012.107

    Article  Google Scholar 

  8. Han, J., Meyyappan, M.: The device made of nothing. IEEE Spectr. 51, 30–35 (2014). https://doi.org/10.1109/MSPEC.2014.6840798

    Article  Google Scholar 

  9. Ravariu, C.: Vacuum nano-triode in nothing-on-insulator configuration working in terahertz domain. IEEE J. Electron Devices Soc. 6, 1115–1123 (2018). https://doi.org/10.1109/JEDS.2018.2868465

    Article  Google Scholar 

  10. Spindt, C.A.: A thin-film field-emission cathode. J. Appl. Phys. 39, 3504–3505 (1968). https://doi.org/10.1063/1.1656810

    Article  Google Scholar 

  11. Adler, E.A., Bardai, Z., Forman, R., Goebel, D.M., Longo, R.T., Sokolich, M.: Demonstration of low voltage field emission. IEEE Trans. Electron Devices. 38, 2304–2308 (1991). https://doi.org/10.1109/16.88514

    Article  Google Scholar 

  12. Spindt, C.A., Holland, C.E., Rosengreen, A., Brodie, I.: Field-emitter arrays for vacuum microelectronics. IEEE Trans. Electron Devices. 38, 2355–2363 (1991). https://doi.org/10.1109/16.88525

    Article  Google Scholar 

  13. Brodi, I.: Physical considerations in vacuum microelectronics devices. IEEE Trans. Electron Devices. 36, 2641–2644 (1989). https://doi.org/10.1109/16.43766

    Article  Google Scholar 

  14. Park, J.-H., Lee, H.-I., Tae, H.-S., Huh, J.-S., Lee, J.-H.: Lateral field emission diodes using SIMOX wafer. IEEE Trans. Electron Devices. 44, 1018–1021 (1997). https://doi.org/10.1109/16.585560

    Article  Google Scholar 

  15. Park, S.-S., Park, D.-I., Hahm, S.-H., Lee, J.-H., Choi, H.-C., Lee, J.-H.: Fabrication of a lateral field emission triode with a high current density and high transconductance using the local oxidation of the polysilicon layer. IEEE Trans. Electron Devices. 46, 1283–1289 (1999). https://doi.org/10.1109/16.766899

    Article  Google Scholar 

  16. Yang, Y., Huo, S., Jiang, L.H., Kong, Y.C., Chen, T.S., Zhou, H., Teh, A.S., Butler, T., Hasko, D., Amaratunga, G.A.: Carbon nanotube lateral field emission device with embedded field effect transistor. In: 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC). pp. 1–2. IEEE (2018)

  17. Wang, X., Shen, Z., Wu, S., Zhang, J.: Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming. Solid. State. Electron. 132, 1–5 (2017). https://doi.org/10.1016/j.sse.2017.03.002

    Article  Google Scholar 

  18. Wu, G., Wei, X., Zhang, Z., Chen, Q., Peng, L.: A graphene-based vacuum transistor with a high ON/OFF current ratio. Adv. Funct. Mater. 25, 5972–5978 (2015). https://doi.org/10.1002/adfm.201502034

    Article  Google Scholar 

  19. Subramanian, K., Kang, W.P., Davidson, J.L.: Nanocrystalline diamond lateral vacuum microtriode. Appl. Phys. Lett. 93, 203511 (2008). https://doi.org/10.1063/1.3036008

    Article  Google Scholar 

  20. Park, C.-M., Lim, M.-S., Han, M.-K.: A novel in situ vacuum encapsulated lateral field emitter triode. IEEE Electron Device Lett. 18, 538–540 (1997). https://doi.org/10.1109/55.641438

    Article  Google Scholar 

  21. Han, J.-W., Oh, J.S., Meyyappan, M.: Cofabrication of vacuum field emission transistor (VFET) and MOSFET. IEEE Trans. Nanotechnol. 13, 464–468 (2014). https://doi.org/10.1109/TNANO.2014.2310774

    Article  Google Scholar 

  22. Srisonphan, S., Kim, M., Kim, H.K.: Space charge neutralization by electron-transparent suspended graphene. Sci. Rep. 4, 3764 (2015). https://doi.org/10.1038/srep03764

    Article  Google Scholar 

  23. Srisonphan, S., Hongesombut, K.: Tuning the ballistic electron transport of spatial graphene–metal sandwich electrode on a vacuum-silicon-based device. RSC Adv. 5, 2032–2037 (2015). https://doi.org/10.1039/C4RA09503K

    Article  Google Scholar 

  24. Park, I.J., Jeon, S.-G., Shin, C.: A new slit-type vacuum-channel transistor. IEEE Trans. Electron Devices. 61, 4186–4191 (2014). https://doi.org/10.1109/TED.2014.2361912

    Article  Google Scholar 

  25. Shen, Z., Wang, X., Wu, S., Tian, J.: A new kind of vertically aligned field emission transistor with a cylindrical vacuum channel. Vacuum 137, 163–168 (2017). https://doi.org/10.1016/j.vacuum.2017.01.002

    Article  Google Scholar 

  26. Han, J.-W., Seol, M.-L., Moon, D.-I., Hunter, G., Meyyappan, M.: Nanoscale vacuum channel transistors fabricated on silicon carbide wafers. Nat. Electron. 2, 405–411 (2019). https://doi.org/10.1038/s41928-019-0289-z

    Article  Google Scholar 

  27. Apte, A., Joshi, P., Bhaskar, P., Joag, D., Kulkarni, S.: Vertically aligned self-assembled gold nanorods as low turn-on, stable field emitters. Appl. Surf. Sci. 355, 978–983 (2015). https://doi.org/10.1016/j.apsusc.2015.07.171

    Article  Google Scholar 

  28. Nirantar, S., Ahmed, T., Ren, G., Gutruf, P., Xu, C., Bhaskaran, M., Walia, S., Sriram, S.: Metal-air transistors: semiconductor-free field-emission air-channel nanoelectronics. Nano Lett. 18, 7478–7484 (2018). https://doi.org/10.1021/acs.nanolett.8b02849

    Article  Google Scholar 

  29. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. A Math. Phys. Eng. Sci. 119, 173–181 (1928). https://doi.org/10.1098/rspa.1928.0091

    Article  MATH  Google Scholar 

  30. Gomer, R.: Field Emissions and Field Ionization. AIP Press, College Park (1993)

    Google Scholar 

  31. Spindt, C.A., Brodie, I., Humphrey, L., Westerberg, E.R.: Physical properties of thin-film field emission cathodes with molybdenum cones. J. Appl. Phys. 47, 5248–5263 (1976). https://doi.org/10.1063/1.322600

    Article  Google Scholar 

  32. Dvorson, L., Ding, M., Akinwande, A.I.: Analytical electrostatic model of silicon conical field emitters. II. Extension to devices with focusing electrode. IEEE Trans. Electron Devices 48, 144–148 (2001). https://doi.org/10.1109/16.892181

    Article  Google Scholar 

  33. Han, J.-W., Sub Oh, J., Meyyappan, M.: Vacuum nanoelectronics: back to the future?—Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100, 213505 (2012). https://doi.org/10.1063/1.4717751

    Article  Google Scholar 

  34. Han, J.-W., Moon, D.-I., Meyyappan, M.: Nanoscale vacuum channel transistor. Nano Lett. 17, 2146–2151 (2017). https://doi.org/10.1021/acs.nanolett.6b04363

    Article  Google Scholar 

  35. Hsu, S.H., Kang, W.P., Davidson, J.L., Huang, J.H., Kerns, D.V.: Performance characteristics of nanocrystalline diamond vacuum field emission transistor array. J. Appl. Phys. 111, 114502 (2012). https://doi.org/10.1063/1.4723833

    Article  Google Scholar 

  36. Kim, J., Kim, J., Oh, H., Meyyappan, M., Han, J.-W., Lee, J.-S.: Design guidelines for nanoscale vacuum field emission transistors. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 34, 042201 (2016). https://doi.org/10.1116/1.4944687

    Article  Google Scholar 

  37. Kang, M.-G., Yun, I.-G.: Modeling Electrical Characteristics for Multi-Finger MOSFETs Based on Drain Voltage Variation. Trans. Electr. Electron. Mater. 12, 245–248 (2011). https://doi.org/10.4313/TEEM.2011.12.6.245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Sharifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohani Khoshkbijari, F., Sharifi, M.J. Reducing the gate current in vacuum channel field-emission transistors using a finger gate. J Comput Electron 19, 263–270 (2020). https://doi.org/10.1007/s10825-020-01448-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01448-y

Keywords

Navigation