Skip to main content
Log in

Variation in Structural Properties and Cation Distribution with Zinc Addition in Cobalt Ferrites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Samples of Co1–xZnxFe2O4 (x = 0.2, 0.4, 0.6 and 0.8) were prepared using the typical wet chemical co-precipitation process. The samples were then sintered at 600°C and 800°C for 3 h in air. The structure of the material was investigated by x-ray diffraction (XRD) and Rietveld refinement, and a single-phase spinel cubic structure was confirmed by XRD. The size and shape of the material were evaluated by transmission electron microscopy (TEM). The selected area electron diffraction (SAED) pattern revealed distinct planes of the system. Investigation of the Fourier transform infrared (FTIR) spectra confirmed the successful uniform coating. The transformation of relaxations was revealed by Mössbauer spectroscopy. Changes in saturation magnetization and remanent magnetization were observed using a vibrating sample magnetometer. The lowest coercivity value verified the soft nature of the ferrite material. The allocation of cations according to the change in composition was studied with the help of Mössbauer spectroscopy. The transition from ferromagnetic to paramagnetic behavior was also revealed. The real and imaginary parts of the complex permeability were computed from frequencies of 1 kHz to 120 MHz using an impedance analyzer. It was observed that the constant value up to a higher-frequency range makes the material suitable for storage device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.A. McCurrie, Ferromagnetic materials—structure and properties (San Diego, London: Academic Press, 1994).

    Google Scholar 

  2. X.-M. Lin, and A.C.S. Samia, Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater. 305(1), 100 (2006). https://doi.org/10.1016/j.jmmm.2005.11.042.

    Article  CAS  Google Scholar 

  3. H.I. Gul, and A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloys Compd. 465(1–2), 227 (2008). https://doi.org/10.1016/j.jallcom.2007.11.006.

    Article  CAS  Google Scholar 

  4. R.S. de Biasi, A.B.S. Figueiredo, A.A.R. Fernandes, and C. Larica, Synthesis of cobalt ferrite nanoparticles using combustion waves. Sol. Stat. Commun. 144(1–2), 15 (2007). https://doi.org/10.1016/j.ssc.2007.07.031.

    Article  CAS  Google Scholar 

  5. J. Giri, P. Pradhan, V. Somani, H. Chelawat, S. Chhatre, R. Banarjee, and D. Bahadur, Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1−xBxFe2O4, B=Mn, Co (x=0–1)] for biomedical applications. J. Magn. Magn. Mater. 320(5), 724 (2008). https://doi.org/10.1016/j.jmmm.2007.08.010.

    Article  CAS  Google Scholar 

  6. N. Sanpo, C.C. Berndt, C. Wen, and J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Act. Biomet. 9(3), 5830 (2013). https://doi.org/10.1016/j.actbio.2012.10.037.

    Article  CAS  Google Scholar 

  7. B.R. Vergis, N. Kottam, R. HariKrishna, and B.M. Nagabhushana, Removal of Evans blue dye from aqueous solution using magnetic spinel ZnFe2O4 nanomaterial: adsorption isotherms and kinetics. Nano-Struct. Nano-Obj. 18, 100290 (2019). https://doi.org/10.1016/j.nanoso.2019.100290.

    Article  CAS  Google Scholar 

  8. P. Tiwari, R. Verma, S.N. Kane, T. Tatarchuk, and F. Mazaleyrat, Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.030.

    Article  CAS  Google Scholar 

  9. A.A. El-Fadl, A.M. Hassan, M.H. Mahmoud, T. Tatarchuk, I.P. Yaremiy, A.M. Gismelssed, and M.A. Ahmed, Synthesis and magnetic properties of spinel Zn1− xNixFe2O4 (0.0≤ x≤ 1.0) nanoparticles synthesized by microwave combustion method. J. Magn. Magn. Mater. 471, 192 (2019). https://doi.org/10.1016/j.jmmm.2018.09.074.

    Article  CAS  Google Scholar 

  10. M.A. Ahmed, H.E. Hassan, M.M. Eltabey, K. Latka, and T.R. Tatarchuk, Mössbauer spectroscopy of MgxCu0.5xZn0.5Fe2O4 (x = 0.0, 0.2 and 0.5) ferrites system irradiated by γ-rays. Phys. B Phys. Conden. Matt. 530, 195 (2018). https://doi.org/10.1016/j.physb.2017.10.125.

    Article  CAS  Google Scholar 

  11. R. Sagayaraj, S. Aravazhi, and G. Chandrasekaran, Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles. Int. Nano Lett. 11, 307 (2021). https://doi.org/10.1007/s40089-021-00343-z.

    Article  CAS  Google Scholar 

  12. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, and A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46(10B), 15740 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287.

    Article  CAS  Google Scholar 

  13. V.A. Balanov, A.P. Kiseleva, E.F. Krivoshapkina, E.А Kashtanov, R.R. Gimaev, V.I. Zverev, and P.V. Krivoshapkin, Synthesis of (Mn (1–x) Zn x) Fe2O4 nanoparticles for magnetocaloric applications. J. Sol-Gel Sci. Technol. 95, 795–800 (2020).

    Article  CAS  Google Scholar 

  14. V.D. Krishna, K. Wu, A.M. Perez, and J.P. Wang, Giant magnetoresistance-based biosensor for detection of influenza A virus. Front. Microbiol. 7, 400 (2016). https://doi.org/10.3389/fmicb.2016.00400.

    Article  Google Scholar 

  15. Y.S. Srinivasan, M. Kishore, K.M. Paknikar, D. Bodas, and V. Gajbhiye, Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13(10), 1221 (2018). https://doi.org/10.2217/nnm-2017-0379.

    Article  CAS  Google Scholar 

  16. M. Kazemi, M. Ghobadi, and A. Mirzaie, Cobalt ferrite nanoparticles (CoFe2O4 MNPs) as catalyst and support: magnetically recoverable nanocatalysts in organic synthesis. Nanotechnol. Rev. 7, 43 (2018). https://doi.org/10.1515/ntrev-2017-0138.

    Article  CAS  Google Scholar 

  17. F. Nayeem, A. Parveez, A. Chaudhuri, R. Sinha, and S.A. Khader, Effect of Zn+2 doping on structural, dielectric and electrical properties of cobalt ferrite prepared by auto combustion method. Mater. Today Proc. 4(11), 12138 (2017). https://doi.org/10.1016/j.matpr.2017.09.142.

    Article  Google Scholar 

  18. G. Xi, and Y. Xi, Effects on magnetic properties of different metal ions substitution cobalt ferrite synthesis by sol-gel auto-combustion route using used batteries. Mater. Lett. 164, 444 (2016). https://doi.org/10.1016/j.matlet.2015.11.047.

    Article  CAS  Google Scholar 

  19. C. Iacovita, A. Florea, L. Scorus, E. Pall, R. Dudric, A.I. Moldovan, R. Stiufiuc, R. Tetean, and C.M. Lucaciu, Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. Nanomaterials 9(10), 1489 (2019). https://doi.org/10.3390/nano9101489.

    Article  CAS  Google Scholar 

  20. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, and A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256 (2018). https://doi.org/10.1016/j.jallcom.2017.10.103.

    Article  CAS  Google Scholar 

  21. M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, and R. Viswanath, Green synthesis of zinc doped cobalt ferrite nanoparticles: structural, optical, photocatalytic and antibacterial studies. Nano-Struct. Nano-Obj. 19, 100322 (2019). https://doi.org/10.1016/j.nanoso.2019.100322.

    Article  CAS  Google Scholar 

  22. V.K. Chakradhary, A. Ansari, and M.J. Akhtar, Design, synthesis and testing of high coactivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magn. Magn. Mater. 469, 674 (2019). https://doi.org/10.1016/j.jmmm.2018.09.021.

    Article  CAS  Google Scholar 

  23. T. Dippong, E.A. Levei, and O. Cadar, Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials 11(6), 1560 (2021). https://doi.org/10.3390/nano11061560.

    Article  CAS  Google Scholar 

  24. I.C. Nlebedim, J.E. Snyder, A.J. Moses, and D.C. Jiles, Dependence of the magnetic and magnetoelastic properties of cobalt ferrite on processing parameters. J. Magn. Magn. Mater. 322(24), 3938 (2010). https://doi.org/10.1016/j.jmmm.2010.08.026.

    Article  CAS  Google Scholar 

  25. A. Muhammad, R. Sato-Turtelli, M. Kriegisch, R. Grössinger, F. Kubel, and T. Konegger, Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4. J. App. Phys. 111, 013918 (2012). https://doi.org/10.1063/1.3675489.

    Article  CAS  Google Scholar 

  26. Y. Köseŏglu, F. Alan, M. Tan, R. Yilgin, and M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38(5), 3625 (2012). https://doi.org/10.1016/j.ceramint.2012.01.001.

    Article  CAS  Google Scholar 

  27. H. Kaur, A. Singh, A. Kumar, and D.S. Ahlawat, Structural, thermal and magnetic investigations of cobalt ferrite doped with Zn2+ and Cd2+ synthesized by auto combustion method. J. Magn. Magn. Mater. 474, 505 (2019). https://doi.org/10.1016/j.jmmm.2018.11.010.

    Article  CAS  Google Scholar 

  28. T. Dippong, E.A. Levei, and O. Cadar, Investigation of structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) obtained by thermal decomposition. Int. J. Mol. Sci. 23(15), 8483 (2022). https://doi.org/10.3390/ijms23158483.

    Article  CAS  Google Scholar 

  29. D.S. Mathew, and R.S. Juang, An overview of structure and magnetism of spinel ferrite nanoferrites and their synthesis in microemulsions. J. Chem. Eng. 129(1–3), 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001.

    Article  CAS  Google Scholar 

  30. M. Hossain, Study of the Magnetic and Transport Properties of Ytterbium Doped Co-zn Ferrites, Khulna University of Engineering and Technology (KUET), Khulna, Bangladesh. (2018). http://hdl.handle.net/20.500.12228/480

  31. R. Topkaya, A. Baykal, and A. Demir, Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanopart. Res. 15(1), 1359 (2013). https://doi.org/10.1007/s11051-012-1359-6.

    Article  CAS  Google Scholar 

  32. S. Dey, and J. Ghose, Synthesis, characterization and magnetic studies on nanocrystalline Co0.2Zn0.8Fe2O4. Mater. Res. Bull. 38(11–12), 1653 (2003). https://doi.org/10.1016/S0025-5408(03)00175-2.

    Article  CAS  Google Scholar 

  33. G. Vaidyanathan, S. Sendhilnathan, and R. Arulmurgan, Structural and magnetic properties of Co1-xZnxFe2O4 nanoferrites by coprecipitation method. J. Magn. Magn. Mater. 313(2), 293 (2007). https://doi.org/10.1016/j.jmmm.2007.01.010.

    Article  CAS  Google Scholar 

  34. W. Li, and L. Fa-Shen, Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles. Chin. Phys. B 17(5), 1858 (2008). https://doi.org/10.1088/1674-1056/17/5/052.

    Article  Google Scholar 

  35. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, and M. Hashim, Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. 2010, 907686 (2010). https://doi.org/10.1155/2010/907686.

    Article  CAS  Google Scholar 

  36. T. Slatineanu, A.R. Iordan, V. Oancea, M.N. Palamaru, I. Dumitru, C.P. Constantin, and O.F. Caltun, Magnetic and dielectric properties of Co–Zn ferrite. Mater. Sci. Eng. B 178(16), 1040 (2013). https://doi.org/10.1016/j.mseb.2013.06.014.

    Article  CAS  Google Scholar 

  37. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, and V.V. Moklyak, Structural characterization and antistructure modeling of cobalt substituted zinc ferrites. J. Alloys Compd. 694, 777 (2017). https://doi.org/10.1016/j.jallcom.2016.10.067.

    Article  CAS  Google Scholar 

  38. M. Atif, M.W. Asghar, M. Nadeem, W. Khalid, Z. Ali, and S. Badshah, Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites. J. Phys. Chem. Solid 123, 36 (2018). https://doi.org/10.1016/j.jpcs.2018.07.010.

    Article  CAS  Google Scholar 

  39. S.G.C. Fonsecaa, L.S. Neivab, M.A.R. Bonifácioc, P.R.C.D. Santosa, U.C. Silvad, and J.B.L.D. Oliveira, Tunable magnetic and electrical properties of cobalt and zinc ferrites Co1-XZnXFe2O4 synthesized by combustion route. Mater. Res. 21(3), 20170861 (2018). https://doi.org/10.1590/1980-5373-MR-2017-0861.

    Article  Google Scholar 

  40. D.D. Andhare, S.R. Patade, J.S. Kounsalye, and K.M. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via coprecipitation method. Phys. B Phys. Conden. Matt. 583, 412051 (2020). https://doi.org/10.1016/j.physb.2020.412051.

    Article  CAS  Google Scholar 

  41. H. Bedi, S. Rohilla, and N. Chaudhary, Investigation of annealing temperature on the synthesis of zincite doped cobalt ferrite using Rietveld refinement. J. Phys. Confer. Ser. 2070, 012091 (2021). https://doi.org/10.1088/1742-6596/2070/1/012091.

    Article  Google Scholar 

  42. A. Szatmari, R. Bortnic, G. Souca, R. Hirian, L. Barbu-Tudoran, F. Nekvapil, C. Iacovita, E. Burzo, R. Dudric, and R. Tetean, The influence of Zn substitution on physical properties of CoFe2O4 nanoparticles. Nanomaterials 13, 189 (2023). https://doi.org/10.3390/nano13010189.

    Article  CAS  Google Scholar 

  43. A.M.M. Ferea, S. Kumar, K.M. Batoo, A. Yousef, and C.G. Lee, Alimuddin; structure and electrical properties of Co0.5CdxFe2.5-xO4 ferrites. J. Alloy. Compd. 464(1–2), 361 (2008). https://doi.org/10.1016/j.jallcom.2007.09.126.

    Article  CAS  Google Scholar 

  44. K.J. Standley, Oxide magnetic materials (Oxford: Clarendon Press, UK, 1972).

    Google Scholar 

  45. L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Z. Physik. 5, 17–26 (1921). https://doi.org/10.1007/BF01349680.

    Article  CAS  Google Scholar 

  46. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoğlu, M. Sertkol, and B. Aktas, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloys Compd. 479(1–2), 49–55 (2009). https://doi.org/10.1016/j.jallcom.2009.01.014.

    Article  CAS  Google Scholar 

  47. F.J. Owens, and C.P. Poole, The physics and chemistry of nanosolids (New Jersey: Wiley, 2008), p.43.

    Google Scholar 

  48. C. Upadhyay, and H.C. Verma, Cation distribution in nanosized Ni–Zn ferrites. J. Appl. Phys. 95, 5746 (2004). https://doi.org/10.1063/1.1699501.

    Article  CAS  Google Scholar 

  49. M. Ajmal, and A. Maqsood, Structural, electrical and magnetic properties of Cu1−xZnxFe2O4 ferrites (0 ≤ x ≤ 1). J. Alloy. Compd. 460(1–2), 54 (2008). https://doi.org/10.1016/j.jallcom.2007.06.019.

    Article  CAS  Google Scholar 

  50. J. Smit, and H.P.J. Wijn, Ferrites (New York: Wiley, 1959).

    Google Scholar 

  51. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, and R.G. Mendiratta, Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique. Mater. Sci. Eng. B 116(1), 1 (2005). https://doi.org/10.1016/j.mseb.2004.08.011.

    Article  CAS  Google Scholar 

  52. X. Qi, J. Zhou, Z. Yue, Z. Gui, and L. Li, Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. J. Magn. Magn. Mater. 251(3), 316 (2002). https://doi.org/10.1016/S0304-8853(02)00854-5.

    Article  CAS  Google Scholar 

  53. N.M. Deraz, and A. Alarifi, Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrolys. 94, 41 (2012). https://doi.org/10.1016/j.jaap.2011.10.004.

    Article  CAS  Google Scholar 

  54. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystall. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558.

    Article  CAS  Google Scholar 

  55. E. Žagar, and J. Grdadolnik, An infrared spectroscopic study of H-bond network in hyperbranched polyester polyol. J. Mol. Struct. 658(3), 143 (2003). https://doi.org/10.1016/S0022-2860(03)00286-2.

    Article  CAS  Google Scholar 

  56. J. Balavijayalakshmi, and Greeshma, Synthesis and characterization of magnesium ferrite nanoparticles by coprecipitation method. J. Environ. Nanotech. 2(2), 53 (2013). https://doi.org/10.13074/jent.2013.06.132015.

    Article  Google Scholar 

  57. S. Dabagh, K. Chaudhary, Z. Haider, and J. Ali, Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by coprecipitation method. Result Phys. 8, 93 (2018). https://doi.org/10.1016/j.rinp.2017.11.033.

    Article  Google Scholar 

  58. S.K. Kulusreshtha, Cation distribution and canted spin alignment in NiFeAIO4. J. Mater. Sci. Lett. 5(6), 638 (1986). https://doi.org/10.1007/bf01731534.

    Article  Google Scholar 

  59. S. Kumar, A.M.M. Farea, K.M. Batoo, C.G. Lee, B.H. Koo, and A. Yousef, Mössbauer studies of Co0.5CdxFe2.5−xO4 (0.0⩽x⩽0.5) ferrite. Phys. B 403(19–20), 3604 (2008). https://doi.org/10.1016/j.physb.2008.06.001.

    Article  CAS  Google Scholar 

  60. K. Krieble, T. Schaeffer, J.A. Paulsen, A.P. Ring, C.C.H. Lo, and J.E. Snyder, Mössbauer spectroscopy investigation of Mn-substituted Co-ferrite (CoMnxFe2−xO4). J. Appl. Phys. 97, 10F101 (2005). https://doi.org/10.1063/1.1846271.

    Article  CAS  Google Scholar 

  61. I. Sharifi, and H. Shokrollahi, Structural, magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by coprecipitation. J. Magn. Magn. Mater. 334, 36 (2013). https://doi.org/10.1016/j.jmmm.2013.01.021.

    Article  CAS  Google Scholar 

  62. M. Gupta, and S.R. Balwinder, Mössbauer, magnetic and electric studies on mixed Rb–Zn ferrites prepared by solution combustion method. J. Mater. Chem. Phys. 130(1–2), 513 (2011). https://doi.org/10.1016/j.matchemphys.2011.07.017.

    Article  CAS  Google Scholar 

  63. E. Berkowitz, W.J. Scuele, and P.J. Flanders, Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J. Appl. Phys. 39(2), 1261 (1969). https://doi.org/10.1063/1.1656256.

    Article  Google Scholar 

  64. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, and A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni-Zn ferrite nanoferrites prepared by sol-gel auto-combustion. J. Phys. Chem. Sol. 71(12), 1669 (2010). https://doi.org/10.1016/j.jpcs.2010.08.016.

    Article  CAS  Google Scholar 

  65. H.K. Jun, J.H. Koo, and T.J. Lee, Study of Zn-Ti based H2S removal sorbents promoted Co and NI oxides. Energy Fuel 18(1), 41 (2004). https://doi.org/10.1021/ef030117j.

    Article  CAS  Google Scholar 

  66. Z.C. Xu, Magnetic anisotropy and Mossbauer spectra in disordered lithium-zinc ferrites. J. Appl. Phys. 93, 4746 (2003). https://doi.org/10.1063/1.1562745.

    Article  CAS  Google Scholar 

  67. T. Nakamura, T. Miyamoto, and Y. Yamada, Complex permeability spectra of polycrystalline Li-Zn ferrite and application to EM-wave absorber. J. Magn. Magn. Mater. 256(1–3), 340 (2003). https://doi.org/10.1016/S0304-8853(02)00698-4.

    Article  CAS  Google Scholar 

  68. S. Noor, M.A. Hakim, S.S. Sikder, S.M. Hoque, K.H. Maria, and P. Nordblad, Magnetic behaviour of Cd2+ substituted cobalt ferrites. J. Phys. Chem. Solids 73(2), 227 (2012). https://doi.org/10.1016/j.jpcs.2011.10.038.

    Article  CAS  Google Scholar 

  69. S. Akhter, and M.A. Hakim, Magnetic properties of cadmium substituted lithium ferrites. J. Mater. Chem. Phys. 120, 399 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.023.

    Article  CAS  Google Scholar 

  70. N. Bloembergen, Magnetic resonance in ferrites. Proc. Ins. Electr. Rad. Eng. 44, 1259 (1956). https://doi.org/10.1109/JRPROC.1956.274949.

    Article  CAS  Google Scholar 

  71. G.T. Rado, R.W. Wright, and W.H. Emerson, Ferro-magnetism at very high frequencies. III. Two mechanisms of dispersion in a ferrite. Phys. Rev. 80(2), 273 (1950). https://doi.org/10.1103/PhysRev.80.273.

    Article  Google Scholar 

  72. H. Jia, W. Liu, Z. Zhang, F. Chen, Y. Li, J. Liu, and Y. Nie, Monodomain MgCuZn ferrite with equivalent permeability and permittivity for broad frequency band applications. Ceram. Int. 43(8), 5974 (2017). https://doi.org/10.1016/j.ceramint.2017.01.129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are greatly obliged to Uppsala University, Sweden, for their support under their International Science Program. The authors are thankful to the Materials Science Division, Atomic Energy Centre, Dhaka-1000, Bangladesh, for providing investigational amenities. We recognize the recurrent support of Chittagong University of Engineering and Technology (CUET), Chittagong 4349, Bangladesh. The authors are also grateful to the Ministry of Science and Technology, Bangladesh, for the selection for the NST fellowship to Shamima Nasrin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamima Nasrin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrin, S., Hossen, M.M., Chowdhury, FU . et al. Variation in Structural Properties and Cation Distribution with Zinc Addition in Cobalt Ferrites. J. Electron. Mater. 53, 866–880 (2024). https://doi.org/10.1007/s11664-023-10836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10836-6

Keywords

Navigation