Skip to main content
Log in

Prediction of Structural and Electronic Properties of Doped Compounds Ca0.75X0.25B2 (X = Fe, Cd, K) Using Density Functional Theory

  • Invited Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work we examine the effect of electron doping (through partial substitution of Ca by Fe or Cd) and hole doping (through partial substitution of Ca by K) on the electronic structure of CaB2. This is carried out using the WIEN2K code, based on density functional theory (DFT) in its full potential, with PBE and PBE0 functionals as exchange and correlation approximation through the use of generalized gradient approximation (GGA). The electronic structure including the band structure, total and partial densities of states, and charge density profiles of the doped materials Ca0.75X0.25 B2 (X = Fe, Cd, K) are carefully examined. By comparing the results obtained for the band structure and density of states with the those of the original materials MgB2 and CaB2, we reveal the importance of the choice of method in understanding complex materials such as transition metals. These results provide adequate predictions of the transformation to a superconductive state by electron and hole doping for the Ca0.75Fe0.25B2 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Cava, H.W. Zandbergen, and K. Inumaru, The substitutional chemistry of MgB2. Phys. C Supercond Appl. 385, 8 (2003).

    Article  CAS  Google Scholar 

  2. J. Karpinski, N.D. Zhigadlo, S. Katrych, K. Rogacki, B. Batlogg, M. Tortello, and R. Puzniak, MgB2 single crystals substituted with Li and with Li-C: Structural and superconducting properties. Phys. Rev. B Condens. Matter Mater. Phys. 77, 214507 (2008).

    Article  Google Scholar 

  3. A.T. Ulgen, Evaluation of superconducting properties and diffusion behavior of ex situ and in situ bulk MgB2 materials with Ni coating. J. Supercond. Nov. Magn. 32, 2383 (2019).

    Article  CAS  Google Scholar 

  4. V.A. Gasparov, N.S. Sidorov, I.I. Zver’kova, and M.P. Kulakov, Electron transport in diborides: observation of superconductivity in ZrB2. JETP Lett. 73, 532 (2001).

    Article  CAS  Google Scholar 

  5. L. Leyarovska, and E. Leyarovski, A search for superconductivity below 1 k in transition metal borides. J. Less Common Met. 67, 249 (1979).

    Article  CAS  Google Scholar 

  6. H. Rosner, W.E. Pickett, S.L. Drechsler, A. Handstein, G. Behr, G. Fuchs, K. Nenkov, K.H. Müller, and H. Eschrig, Electronic structure and weak electron-phonon coupling in TaB2. Phys. Rev. B Condens. Matter Mater. Phys. 64, 144516 (2001).

    Article  Google Scholar 

  7. C. Pei, J. Zhang, Q. Wang, Y. Zhao, L. Gao, C. Gong, S. Tian, R. Luo, M. Li, W. Yang, Z.-Y. Lu, H. Lei, K. Liu, and Y. Qi, Pressure-induced superconductivity at 32 K in MoB2. Natl. Sci. Rev. 10, 5 (2023).

    Article  Google Scholar 

  8. J. Lim, A.C. Hire, Y. Quan, J.S. Kim, S.R. Xie, S. Sinha, R.S. Kumar, D. Popov, C. Park, R.J. Hemley, Y.K. Vohra, J.J. Hamlin, R.G. Hennig, P.J. Hirschfeld, and G.R. Stewart, Creating superconductivity in WB2 through pressure-induced metastable planar defects. Nat. Commun. 13, 2109 (2022).

    Article  Google Scholar 

  9. R. Wang, Y. Sun, F. Zhang, F. Zheng, Y. Fang, S. Wu, H. Dong, C.Z. Wang, V. Antropov, and K.M. Ho, High-throughput screening of strong electron-phonon couplings in ternary metal diborides. Inorg. Chem. 61, 18154 (2022).

    Article  CAS  Google Scholar 

  10. R. Sharma, S. Khan, V. Goyal, V. Sharma, and K.S. Sharma, Investigation on effect of boron and nitrogen substitution on electronic structure of graphene. Flat Chem 1, 20 (2017).

    Article  CAS  Google Scholar 

  11. A.M. Ionescu, G. Aldica, S. Popa, M. Enculescu, V. Sandu, I. Pasuk, M. Burdusel, M.A. Grigoroscuta, L. Miu, and P. Badica, MgB2 with addition of cubic BN and Ge2C6H10O7 obtained by spark plasma sintering technique. J. Supercond. Nov. Magn. 35, 3467 (2022).

    Article  CAS  Google Scholar 

  12. A. Lazicki, B. Maddox, W.J. Evans, C.S. Yoo, A.K. McMahan, W.E. Pickett, R.T. Scalettar, M.Y. Hu, and P. Chow, New cubic phase of Li3N: stability of the N3- ion to 200 GPa. Phys. Rev. Lett. 95, 165503 (2005).

    Article  CAS  Google Scholar 

  13. H.J. Choi, S.G. Louie, and M.L. Cohen, Prediction of superconducting properties of CaB2 using anisotropic Eliashberg theory. Phys. Rev. B Condens. Matter Mater. Phys 80, 2105 (2009).

    Article  Google Scholar 

  14. S.V. Okatov, A.L. Ivanovskii, Y.E. Medvedeva, and N.I. Medvedeva, The electronic band structures of superconducting MgB2 and related borides CaB2, MgB6 and CaB6. Phys. Stat. Sol. 225, 1521 (2001).

    Article  Google Scholar 

  15. C. Sevik, M. Petrov, J. Bekaert, and M.V. Milošević, High-temperature multigap superconductivity in two-dimensional metal-borides. Phys. Rev. Mater. 6, 024803 (2022).

    Article  CAS  Google Scholar 

  16. H. Gao, C. Ding, W. Geng, X. Ma, Y. Li, and M. Zhao, Undamped plasmon modes and enhanced superconductivity in metal diborides. New J. Phys. 23, 1367 (2021).

    Article  Google Scholar 

  17. I.D.R. Mackinnon, P.C. Talbot, and J.A. Alarco, Phonon dispersion anomalies and superconductivity in metal substituted MgB2. Comput. Mater. Sci. 130, 191 (2017).

    Article  CAS  Google Scholar 

  18. J.A. Alarco, P.C. Talbot, and I.D.R. Mackinnon, Phonon anomalies predict superconducting Tc for AlB2-type structures. Phys. Chem. Chem. Phys. 17, 25090 (2015).

    Article  CAS  Google Scholar 

  19. N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, and A.J. Freeman, Electronic structure of superconducting MgB2 and related binary and ternary borides. Phys. Rev. B Condens. Matter Mater. Phys. 64, 020502 (2001).

    Article  Google Scholar 

  20. P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus, and H. Fjellvåg, Detailed electronic structure studies on superconducting MgB2 and related compounds. Phys. Rev. B 64, 224509 (2001).

    Article  Google Scholar 

  21. O. Benhelal, A. Chahed, S. Laksari, B. Abbar, B. Bouhafs, and H. Aourag, First-principles calculations of the structural, electronic and optical properties of IIA-IV antifluorite compounds. Phys. Status Solidi Basic Res. 242, 2022 (2005).

    Article  CAS  Google Scholar 

  22. P. Vajeeston, P. Ravindran, and H. Fjellvåg, Prediction of structural, lattice dynamical, and mechanical properties of CaB2. RSC Adv. 2, 11687 (2012).

    Article  CAS  Google Scholar 

  23. B. Savaşkan, Effect of the sintering temperature on electromagnetic behaviour of MgB2 bulks using experimental and numerical methods. J. Supercond. Nov. Magn. 35, 2737 (2022).

    Article  Google Scholar 

  24. P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399 (1990).

    Article  CAS  Google Scholar 

  25. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  26. P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  27. W. Kohn, and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  28. A.D. Becke, A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372 (1993).

    Article  CAS  Google Scholar 

  29. V.G. Tyuterev, and N. Vast, Murnaghan’s equation of state for the electronic ground state energy. Comput. Mater. Sci. 38, 350 (2006).

    Article  CAS  Google Scholar 

  30. R. Osborn, E.A. Goremychkin, A.I. Kolesnikov, and D.G. Hinks, Phonon density-of-states in MgB2. Phys. Rev. Lett. 87, 017005 (2001).

    Article  CAS  Google Scholar 

  31. K. Prassides, Y. Iwasa, T. Ito, D.H. Chi, K. Uehara, E. Nishibori, M. Takata, S. Sakata, Y. Ohishi, O. Shimomura, T. Muranaka, and J. Akimitsu, Compressibility of the MgB2 Superconductor. Phys. Rev. B Condens. Matter Mater. Phys. 64, 012509 (2001).

    Article  Google Scholar 

  32. M.E. Jones, and R.E. Marsh, The preparation and structure of magnesium boride, MgB2. J. Am. Chem. Soc. 76, 1434 (1954).

    Article  CAS  Google Scholar 

  33. M. Shafiei, H. Khosroabadi, and M. Akhavan, First-principle electronic structure calculation of BaFe2x Cox As2 (X=0,1, 2) superconductor. J. Supercond. Nov. Magn. 28, 2249 (2015).

    Article  CAS  Google Scholar 

  34. P.L. Alireza, Y.T.C. Ko, J. Gillett, C.M. Petrone, J.M. Cole, G.G. Lonzarich, and S.E. Sebastian, Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J. Phys. Condens. Matter 21, 012208 (2009).

    Article  Google Scholar 

  35. T. Vogt, G. Schneider, J.A. Hriljac, G. Yang, and J.S. Abell, Compressibility and electronic structure of MgB2 up to 8 GPa. Phys. Rev. B Condens. Matter Mater. Phys. 63, 2205051 (2001).

    Article  Google Scholar 

  36. K.-P. Bohnen, R. Heid, and B. Renker, Phonon dispersion and electron-phonon coupling in MgB2 and AlB2. Phys. Rev. Lett. 86, 5771 (2001).

    Article  CAS  Google Scholar 

  37. B. Lorenz, R.L. Meng, Y. Xue, and C.W. Chu, Thermoelectric power and transport properties of Mg1xAlxB2. Phys. Rev. B Condens. Matter Mater. Phys. 64, 525 (2001).

    Article  Google Scholar 

  38. S. Borisenko, V. Bezguba, A. Fedorov, Y. Kushnirenko, V. Voroshnin, M. Sturza, S. Aswartham, and A. Yaresko, Strongly correlated superconductor with polytypic 3D Dirac points. Npj Quantum Mater. 5, s41535 (2020).

    Article  Google Scholar 

  39. I. Hassaine, A. Ouahab, and A. Boukraa, Theoretical study of electronic and magnetic properties of newly derived iron-pnictide compound. J. Supercond. Nov. Magn. 30, 2043 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Laboratory for the Development of New and Renewable Energies in Arid Zones, Univ Ouargla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Hassaine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassaine, I., Ouahab, A. Prediction of Structural and Electronic Properties of Doped Compounds Ca0.75X0.25B2 (X = Fe, Cd, K) Using Density Functional Theory. J. Electron. Mater. 53, 557–570 (2024). https://doi.org/10.1007/s11664-023-10806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10806-y

Keywords

Navigation