Skip to main content

Advertisement

Log in

First-principles prediction of electronic, optical, and thermodynamic properties of c-TiAl3 with M doping (M = V, Nb, Ta)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In order to explore the neotype functional properties contained in transition metal elements-doped L12-type TiAl3 materials, we used the first-principles calculation method based on density functional theory (DFT) to study systematically the electronic, optical, and thermodynamic properties of c-TiAl3 with M doping (M = V, Nb, Ta). The calculation results of formation enthalpies \(\Delta H_{f}\) and the density of states showed that these seven phases are thermodynamically stable, and the order of thermodynamic stability is Ti8Al23M > c-TiAl3 > Ti7Al24M. The research of electronic properties showed that these seven phases are all metallic, and the order of conductivity is Ti8Al23M > Ti7Al24M > c-TiAl3. The research results of optical properties showed that these seven phases are also metallic. After M atoms are doped with c-TiAl3, the dielectric properties and conductivity of the doping system are improved, and the order of the dielectric properties and conductivity is consistent with the result of electronic properties. Therefore, their application potential in optoelectronic materials is extremely high. Finally, we use the quasi-harmonic Debye model to study the thermodynamic properties of these seven phases in the pressure range of 0–40 GPa and the temperature range of 0–1200 K, including heat capacity (CV, CP), thermal expansion coefficient (α), and Debye temperature (θD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A Grytsiv, P Rogl, H Schmidt, G Giester, P Hundegger, G Wiesinger and V Pomjakushin Intermetallics. 12 563 (2004)

    Article  Google Scholar 

  2. J Tan and K Zhu J. Computational Physics. 34 365 (2017)

    Google Scholar 

  3. J C Pang, X P Cui, A B Li, G H Fan, L Geng, Z Z Zheng and Q W Wang Materials Sci. & Engineering A Structural Materials Properties Microstructure & Processing. 579 57 (2013)

    Article  Google Scholar 

  4. M T Whittaker, W Harrison, P J Hurley and S Williams Materials Sci. & Engineering A. 527 4365 (2010)

    Article  Google Scholar 

  5. M Castillo-Rodríguez, M L Nó, J A Jiménez, O A Ruano and J S Juan Acta Mater. 527 4365 (2016)

    Google Scholar 

  6. Y Chen, F Kong, J Han, Z Chen and T Jing Intermetallics. 13 263 (2005)

    Article  Google Scholar 

  7. J Li and M Zhang J. Alloy. Compo. 556 214 (2013)

    Article  Google Scholar 

  8. C Colinet and A Pasturel Intermetallics. 10 751 (2002)

    Article  Google Scholar 

  9. G X Jin, L J Qiao, K W Gao, T Kimura and W Y Chu Acta Metallrugica Sinica. 40 179 (2004)

    Google Scholar 

  10. H Y Wang, Q K Hu, W P Yang and X S Li Acta Physica Sinica. 7 256 (2016)

    Google Scholar 

  11. S Q Tang, S J Qu, A H Feng and S Li Rarer. Metals. 41 81 (2017)

    Google Scholar 

  12. J C Viala, N Peillon and L Clochefert Sci. Engine. A 203 222 (1995)

    Article  Google Scholar 

  13. M Kogachi and A Kameyama Intermetallics. 3 327 (1995)

    Article  Google Scholar 

  14. Y G Li and M H Loretto Act. Metall. Et Materialia. 42 2009 (1994)

    Article  ADS  Google Scholar 

  15. Y F Li, H Xu and Q L Xia Sci. and Engine. Powd. Metallurgy. 15 102 (2010)

    Google Scholar 

  16. G L Zhu, S Da, Y B Dai, J Wang and B D Sun Acta Physica Sinica. 58 210 (2009)

    Article  Google Scholar 

  17. H Hai, X Wu, W Rui and Z Jia J. Alloy. Compo. 666 185 (2016)

    Article  Google Scholar 

  18. W Kohn and L Sham Phys. Rev. 140 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  19. M D Segall, P J D Lindan, M J Probert, C J Pickard, P J Hasnip and S J Clark J. Physics Condensed Matter. 14 2717 (2002)

    Article  ADS  Google Scholar 

  20. J P Perdew, K Burke and Y Wang Phys. Rev. B, Cond. Matter. 54 16533 (1997)

    Article  ADS  Google Scholar 

  21. J P Perdew and W Yue Physical Review. B, Cond. Matter. 45 13244 (1992)

    Article  ADS  Google Scholar 

  22. P John Rev. Lett. 77 3865 (1997)

    Google Scholar 

  23. S N Sun, N Kioussis and M Ciftan Phys. Rev. B, Condens. Matter. 54 3074 (1996)

    Article  ADS  Google Scholar 

  24. J D Pack and H J Monkhorst Phys. Rev. B, Cond. Matter. 16 1748 (1977)

    Article  ADS  Google Scholar 

  25. D., J., and Chadi Phys. Rev. B Cond. Matter. 13 5188 (1977)

  26. C Zhong J. Atomic and Mole. Phys. 35 666 (2018)

    Google Scholar 

  27. A A Maradudin, E W Montroll and G H Weiss ResearchGate. 5 0556 (1971)

    Google Scholar 

  28. M A Blanco and E Francisco Phys. Commun. 158 57 (2004)

    Article  ADS  Google Scholar 

  29. M Flórez, J Recio, E Francisco and M Blanco Rev. B Cond. Matter. 66 144112 (2002)

    Article  ADS  Google Scholar 

  30. H Rached, D Rached, S Benalia and A H Reshak Chem. Phys. 143 93 (2013)

    Google Scholar 

  31. S J Clark, M D Segallii, C J Pickardii and P J Hasnipiii Kris- Cryst. Mater. 220 567 (2005)

    Article  Google Scholar 

  32. F Birch Phys. Rev. 71 809 (1947)

    Article  ADS  Google Scholar 

  33. G Ghosh, S Vaynman, M Asta and M E Fine Intermetallics. 15 44 (2007)

    Article  Google Scholar 

  34. S Zhou, B Peng, Y Cao and Y Xu B Cond. Matter. 571 118 (2019)

    Article  Google Scholar 

  35. G F Zhan, B Yang and Y He J. Shangrao Normal Univer. 38 41 (2018)

    Google Scholar 

  36. C Lai and Y Hu Chem. Chem. Phys. 22 9009 (2020)

    Article  ADS  Google Scholar 

  37. J Chen, X Zhang, C Ying, H Ma and H Guo Ceram. Int. 46 4595 (2020)

    Article  Google Scholar 

  38. Z P Chen Ningxia University (2018)

  39. H W Shou, R Y Xie, M J Peng and Y H Duan B Cond. Matter. 560 41 (2019)

    Article  Google Scholar 

  40. M Peng, H Shou and Y Cao Phys. B: Cond. Matter. 561 29 (2019)

    Article  ADS  Google Scholar 

  41. D Qu, L Bao, Z Kong and Y Duan Vacuum 179 109488 (2020)

    Article  ADS  Google Scholar 

  42. R Khenata, M Sahnoun, H Baltache, M Rerat, A H Rashek, N Illes and B Bouhafs Solid State Commun. 136 120 (2005)

    Article  ADS  Google Scholar 

  43. D Liu, Y Duan and W Bao Ceramics Int. 44 11438 (2018)

    Article  Google Scholar 

  44. J Zhang, Y Duan and C Li Ceramics Int. 43 13948 (2017)

    Article  Google Scholar 

  45. F W Xie, Y Ping and L Pei Commun. 285 2660 (2012)

    ADS  Google Scholar 

  46. Y Wu, X Wang, Y Wang and Y Duan Mater. 114 110963 (2021)

    Google Scholar 

  47. B Peng Kunming University of Sci. and Technol. (2020)

  48. L Bao, Z Kong and D Qu J. Phys. Chem. Solid. 142 109465 (2020)

    Article  Google Scholar 

  49. Z Huang, J Feng and W Pan Solid State Commun. 151 1559 (2011)

    Article  ADS  Google Scholar 

  50. Y Liu, W C Hu, D J Li, X Q Zeng and C S Xu B Cond. Matter. 432 33 (2014)

    Article  Google Scholar 

  51. A Rb, B Zz, C Aak, D Sa, E Mi, A Mi, F Buh and G Mk J. Solid State Chem. 302 122388 (2021)

    Article  Google Scholar 

  52. H Hua, Z Wen, Y Zhao, F Li and P Han Intermetallics. 44 110 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China, item number (51761021, 51761020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Cao or Shenggang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Cao, Y. & Zhou, S. First-principles prediction of electronic, optical, and thermodynamic properties of c-TiAl3 with M doping (M = V, Nb, Ta). Indian J Phys 97, 2943–2960 (2023). https://doi.org/10.1007/s12648-023-02656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02656-5

Keywords

Navigation