Skip to main content
Log in

Augmenting the Insulating and Heat Transfer Properties of Silicone Oil with Filler Composite GO-CuO Nanoparticles for Transformer Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanofluids have attracted significant attention over the past decade due to the anomalous thermal conductivity in thermal management exhibited by nanofluids containing a low proportion of transition metal nanoparticles. In this work, a hybrid nanofluid graphene oxide (GO)–copper oxide (CuO) composite blended in silicone oil is prepared as a prospective alternative for heat transfer investigation. A simple and low-cost hydrothermal technique is used to fabricate the GO and GO-CuO nanocomposites. Sophisticated spectroscopical methods, including transmission electron microscopy (TEM), Raman spectroscopy, x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), are used to analyze the nanocomposite. The XRD patterns confirm the formation of CuO and the monoclinic structure of the GO-CuO nanocomposite. The FT-IR analysis confirms the presence of the functional groups including C=C, C–O, Cu-O, and Cu-C stretching frequencies. Morphological analysis reveals that CuO particles are deposited on the surface of the GO sheets, as confirmed by SEM and TEM. To prepare hybrid nanofluids, the appropriate amounts of GO and CuO are blended with silicone oil using a reflux technique with concentrations of 0.025 wt.%, 0.05 wt.%, and 0.075 wt.% using a two-step process. The thermal conductivity of nanoparticles containing silicone oil increased by up to 35.67% when compared to unadulterated silicone oil. Moreover, as silicone oil-based nanofluids have improved thermal characteristics, this work will aid in the development of unique hybrid nanofluids for industrial heat transfer applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Justinabraham, S. Sowmya, A. Durairaj, T. Sakthivel, R.J. Wesley, V. Vijaikanth, and S. Vasanthkumar, Synthesis and characterization of SbSI modified g-C3N4 composite for photocatalytic and energy storage applications. J. Alloys Compd. 935, 168115 (2023). https://doi.org/10.1016/j.jallcom.2022.168115.

    Article  CAS  Google Scholar 

  2. P. Xiong, J. Zhu, L. Zhang, and X. Wang, Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons. 1, 340 (2016). https://doi.org/10.1039/C5NH00134J.

    Article  CAS  Google Scholar 

  3. R. Justinabraham, A. Durairaj, S. Ramanathan, A. Obadiah, R. John Wesley, X. Lv, and S. Vasanthkumar, Synthesis of porous g-C3N4 doped vanadyl phosphate for supercapattery application. J. Energy Storage. 40, 102786 (2021). https://doi.org/10.1016/J.EST.2021.102786.

    Article  Google Scholar 

  4. L.R.L. Christensen, T.H. Broholt, V.M. Barthelmes, D. Khovalyg, and S. Petersen, A mixed-methods case study on resident thermal comfort and attitude towards peak shifting of space heating. Energy Build. 276, 112501 (2022). https://doi.org/10.1016/J.ENBUILD.2022.112501.

    Article  Google Scholar 

  5. X.Q. Wang, and A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1 (2007). https://doi.org/10.1016/J.IJTHERMALSCI.2006.06.010.

    Article  Google Scholar 

  6. S. Rashidi, O. Mahian, and E.M. Languri, Applications of nanofluids in condensing and evaporating systems: a review. J. Therm. Anal. Calorim. 131, 2027 (2018). https://doi.org/10.1007/S10973-017-6773-7/METRICS.

    Article  CAS  Google Scholar 

  7. R.S. Anand, C.P. Jawahar, A.B. Solomon, and E. Bellos, A review of experimental studies on cylindrical two-phase closed thermosyphon using refrigerant for low-temperature applications. Int. J. Refrig. Int. Du Froid. 120, 296 (2020). https://doi.org/10.1016/J.IJREFRIG.2020.08.011.

    Article  CAS  Google Scholar 

  8. P. Estellé, and G. Żyła, Fundamental and critical aspects of the rheological behaviour of nanofluids. Fundam. Transp. Prop. Nanofluids. (2022). https://doi.org/10.1039/9781839166457-00147.

    Article  Google Scholar 

  9. X. Zhang, H. Gu, and M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp. Therm. Fluid Sci. 31, 593 (2007). https://doi.org/10.1016/J.EXPTHERMFLUSCI.2006.06.009.

    Article  CAS  Google Scholar 

  10. J.M. Liu, Z.H. Liu, and Y.J. Chen, Experiment and calculation of the thermal conductivity of nanofluid under electric field. Int. J. Heat Mass Transf. 107, 6 (2017). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.11.026.

    Article  CAS  Google Scholar 

  11. S.O. Giwa, M. Sharifpur, M.H. Ahmadi, and J.P. Meyer, A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J. Therm. Anal. Calorim 1455(145), 2581 (2020). https://doi.org/10.1007/S10973-020-09832-3.

    Article  Google Scholar 

  12. A.H. Pordanjani, S. Aghakhani, M. Afrand, M. Sharifpur, J.P. Meyer, H. Xu, H.M. Ali, N. Karimi, and G. Cheraghian, Nanofluids: physical phenomena, applications in thermal systems and the environment effects—a critical review. J. Clean. Prod. 320, 128573 (2021). https://doi.org/10.1016/J.JCLEPRO.2021.128573.

    Article  CAS  Google Scholar 

  13. X. Liu, L. Wang, J. Wang, and J. Su, Pore-scale simulation of particle flooding for enhancing oil recovery. Energies 14, 2305 (2021). https://doi.org/10.3390/EN14082305.

    Article  Google Scholar 

  14. J.H. Qin, Z.Q. Liu, N. Li, Y.B. Chen, and D.Y. Wang, A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity. J. Nanopart. Res. 19, 1 (2017). https://doi.org/10.1007/S11051-017-3743-8/METRICS.

    Article  Google Scholar 

  15. M.J. Uddin, K.S. AlKalbani, M.M. Rahman, M.S. Alam, N. Al-Salti, and I. Eltayeb, Fundamentals of nanofluids: evolution, applications and new theory. Int. J. Biomath. Syst. Biol. 2, 1 (2016).

    Google Scholar 

  16. K. Elsaid, M.A. Abdelkareem, H.M. Maghrabie, E.T. Sayed, T. Wilberforce, A. Baroutaji, and A.G. Olabi, Thermophysical properties of graphene-based nanofluids. Int. J. Thermofluids. 10, 100073 (2021). https://doi.org/10.1016/J.IJFT.2021.100073.

    Article  CAS  Google Scholar 

  17. N.S. Suhaimi, M.F.M. Din, M.T. Ishak, A.R.A. Rahman, J. Wang, and M.Z. Hassan, Performance and limitation of mineral oil-based carbon nanotubes nanofluid in transformer application. Alex. Eng. J. 61, 9623 (2022). https://doi.org/10.1016/J.AEJ.2022.02.071.

    Article  Google Scholar 

  18. S. Bilal, I.A. Shah, M. Ramzan, K.S. Nisar, A. Elfasakhany, E.M. Eed, and H.A.S. Ghazwani, Significance of induced hybridized metallic and non-metallic nanoparticles in single-phase nano liquid flow between permeable disks by analyzing shape factor. Sci. Rep. 121(12), 1 (2022). https://doi.org/10.1038/s41598-022-07251-y.

    Article  CAS  Google Scholar 

  19. P. Liu, Z. Yao, J. Zhou, Z. Yang, and L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 4, 9738 (2016). https://doi.org/10.1039/C6TC03518C.

    Article  CAS  Google Scholar 

  20. M.A. Sharif, S. Salmani, S. Mohajer, and M.H. Majles Ara, Experimental comparison of nonlinear optical properties between graphene oxide and reduced graphene oxide. J. Electron. Mater. 48, 6414 (2019). https://doi.org/10.1007/S11664-019-07442-W/METRICS.

    Article  CAS  Google Scholar 

  21. E.V. Ramana, L.S. Sundar, Z. Said, and A.C.M. Sousa, Thermophysical, electrical, magnetic, and dielectric properties of hybrid nanofluids, hybrid nanofluids prep. ChArcerization Appl. (2022). https://doi.org/10.1016/B978-0-323-85836-6.00003-X.

    Article  Google Scholar 

  22. X. Wei, H. Zhu, T. Kong, and L. Wang, Synthesis and thermal conductivity of Cu2O nanofluids. Int. J. Heat Mass Transf. 52, 4371 (2009). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2009.03.073.

    Article  CAS  Google Scholar 

  23. P. Liu, J. Peng, Y. Chen, M. Liu, W. Tang, Z.H. Guo, and K. Yue, A general and robust strategy for in-situ templated synthesis of patterned inorganic nanoparticle assemblies. Giant. 8, 100076 (2021). https://doi.org/10.1016/J.GIANT.2021.100076.

    Article  CAS  Google Scholar 

  24. N.S. Anuar, N. Bachok, and I. Pop, Influence of buoyancy force on Ag-MgO/water hybrid nanofluid flow in an inclined permeable stretching/shrinking sheet. Int. Commun. Heat Mass Transf. 123, 105236 (2021). https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2021.105236.

    Article  CAS  Google Scholar 

  25. X. Li, and C. Zou, Thermo-physical properties of water and ethylene glycol mixture based SiC nanofluids: an experimental investigation. Int. J. Heat Mass Transf. 101, 412 (2016). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.05.089.

    Article  CAS  Google Scholar 

  26. Y. Mohammadfam, S. Zeinali Heris, and L. Khazini, Experimental Investigation of Fe3O4/hydraulic oil magnetic nanofluids rheological properties and performance in the presence of magnetic field. Tribol. Int. 142, 105995 (2020). https://doi.org/10.1016/J.TRIBOINT.2019.105995.

    Article  CAS  Google Scholar 

  27. K. Karabulut, and D.E. Alnak, Investigation of graphene oxide-distilled water nanofluids with consideration of heat transfer and flow structure for backward-facing step flow. J. Eng. Thermophys. 30, 300 (2021). https://doi.org/10.1134/S1810232821020119/METRICS.

    Article  CAS  Google Scholar 

  28. H.H. Balla, A.L. Hashem, Z.S. Kareem, and A.F. Abdulwahid, Heat transfer potentials of ZnO/water nanofluid in free impingement jet. Case Stud. Therm. Eng. 27, 10114 (2021). https://doi.org/10.1016/J.CSITE.2021.101143.

    Article  Google Scholar 

  29. J.K. Lee, J. Koo, H. Hong, and Y.T. Kang, The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. Int. J. Refrig. 33, 269 (2010). https://doi.org/10.1016/J.IJREFRIG.2009.10.004.

    Article  CAS  Google Scholar 

  30. S. Jalili-Firoozinezhad, M.H. Mohamadzadeh Moghadam, M.H. Ghanian, M.K. Ashtiani, H. Alimadadi, H. Baharvand, I. Martin, and A. Scherberich, Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC Adv. 7, 39628 (2017). https://doi.org/10.1039/C7RA06178A.

    Article  CAS  Google Scholar 

  31. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, and C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469 (2017). https://doi.org/10.1016/J.PROENG.2017.04.118.

    Article  CAS  Google Scholar 

  32. S. Jadhav, S. Gaikwad, M. Nimse, and A. Rajbhoj, Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Clust. Sci. 22, 121 (2011). https://doi.org/10.1007/S10876-011-0349-7/FIGURES/7.

    Article  CAS  Google Scholar 

  33. C. Chimeno-Trinchet, A. Fernández-González, J.Á. García Calzón, M.E. Díaz-García, and R. Badía Laíño, Alkyl-capped copper oxide nanospheres and nanoprolates for sustainability: water treatment and improved lubricating performance. Sci. Technol. Adv. Mater. 20, 657 (2019). https://doi.org/10.1080/14686996.2019.1621683.

    Article  CAS  Google Scholar 

  34. T.F. Emiru, and D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production, Egypt. J. Basic Appl. Sci. 4, 74 (2017). https://doi.org/10.1016/J.EJBAS.2016.11.002.

    Article  Google Scholar 

  35. S. Rani, M. Kumar, R. Garg, S. Sharma, and D. Kumar, Amide functionalized graphene oxide thin films for hydrogen sulfide gas sensing applications. IEEE Sens. J. 16, 2929 (2016). https://doi.org/10.1109/JSEN.2016.2524204.

    Article  CAS  Google Scholar 

  36. V.V.T. Padil, and M. Černík, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 8, 889 (2013). https://doi.org/10.2147/IJN.S40599.

    Article  CAS  Google Scholar 

  37. M.S. Amir Faiz, C.A. Che Azurahanim, S.A. Rabaah, and M.Z. Ruzniza, Low cost and green approach in the reduction of graphene oxide (GO) using palm oil leaves extract for potential in industrial applications. Results Phys. 16, 102954 (2020). https://doi.org/10.1016/J.RINP.2020.102954.

    Article  Google Scholar 

  38. D. Zhu, L. Wang, W. Yu, and H. Xie, Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci. Rep. 81(8), 1 (2018). https://doi.org/10.1038/s41598-018-23174-z.

    Article  CAS  Google Scholar 

  39. O. Folorunso, R. Sadiku, Y. Hamam, and S.S. Ray, An investigation of copper oxide-loaded reduced graphene oxide nanocomposite for energy storage applications. Appl. Phys. A Mater. Sci. Process. 128, 1 (2022). https://doi.org/10.1007/S00339-021-05205-1/TABLES/2.

    Article  Google Scholar 

  40. Y. Pan, K. Ye, D. Cao, Y. Li, Y. Dong, T. Niu, W. Zeng, and G. Wang, Nitrogen-doped graphene oxide/cupric oxide as an anode material for lithium ion batteries. RSC Adv. 4, 64756 (2014). https://doi.org/10.1039/C4RA13336F.

    Article  CAS  Google Scholar 

  41. N.M.S. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman, C.S. Khe, U. Hashim, and H.C. Lee, Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization. AIP Conf. Proc. 1892, 150002 (2017). https://doi.org/10.1063/1.5005764.

    Article  CAS  Google Scholar 

  42. K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, and M. Mazhar, Single step fabrication of CuO–MnO–2TiO2 composite thin films with improved photoelectrochemical response. RSC Adv. 7, 15885 (2017). https://doi.org/10.1039/C6RA28752B.

    Article  CAS  Google Scholar 

  43. M. Rashad, M. Rüsing, G. Berth, K. Lischka, and A. Pawlis, CuO and Co3O4 nanoparticles. J. Nanomater. (2013). https://doi.org/10.1155/2013/714853.

    Article  Google Scholar 

  44. M. Hemmat Esfe, A.A. Abbasian Arani, M. Rezaie, W.M. Yan, and A. Karimipour, Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 66, 189 (2015). https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.06.003.

    Article  CAS  Google Scholar 

  45. A. Kakavandi, and M. Akbari, Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int. J. Heat Mass Transf. 124, 742 (2018). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.03.103.

    Article  CAS  Google Scholar 

  46. A. Qamar, Z. Anwar, H. Ali, S. Imran, R. Shaukat, and M. Mujtaba Abbas, Experimental investigation of dispersion stability and thermophysical properties of ZnO/DIW nanofluids for heat transfer applications. Alex. Eng. J. 61, 4011 (2022). https://doi.org/10.1016/J.AEJ.2021.09.028.

    Article  Google Scholar 

  47. Z. Aparna, M. Michael, S.K. Pabi, and S. Ghosh, Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: An experimental investigation and development of new correlation function. Powder Technol. 343, 714 (2019). https://doi.org/10.1016/J.POWTEC.2018.11.096.

    Article  CAS  Google Scholar 

  48. K.A. Hamid, W.H. Azmi, M.F. Nabil, R. Mamat, and K.V. Sharma, Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. J. Heat Mass Transf. 116, 1143 (2018). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.09.087.

    Article  CAS  Google Scholar 

  49. S.O. Giwa, M. Sharifpur, and J.P. Meyer, Effects of uniform magnetic induction on heat transfer performance of aqueous hybrid ferrofluid in a rectangular cavity. Appl. Therm. Eng. 170, 115004 (2020). https://doi.org/10.1016/J.APPLTHERMALENG.2020.115004.

    Article  CAS  Google Scholar 

  50. I. Wole-Osho, E.C. Okonkwo, H. Adun, D. Kavaz, and S. Abbasoglu, An intelligent approach to predicting the effect of nanoparticle mixture ratio, concentration and temperature on thermal conductivity of hybrid nanofluids. J. Therm. Anal. Calorim. 144, 671 (2021). https://doi.org/10.1007/S10973-020-09594-Y/TABLES/8.

    Article  CAS  Google Scholar 

  51. S.O. Giwa, M. Sharifpur, M. Goodarzi, H. Alsulami, and J.P. Meyer, Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J. Therm. Anal. Calorim. 143, 4149 (2021). https://doi.org/10.1007/S10973-020-09372-W/METRICS.

    Article  CAS  Google Scholar 

  52. S. Rostami, D. Toghraie, B. Shabani, N. Sina, and P. Barnoon, Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J. Therm. Anal. Calorim. 143, 1097 (2021). https://doi.org/10.1007/S10973-020-09458-5/METRICS.

    Article  CAS  Google Scholar 

  53. M. Sadeghzadeh, H. Maddah, M.H. Ahmadi, A. Khadang, M. Ghazvini, A. Mosavi, and N. Nabipour, Prediction of thermo-physical properties of TiO2-Al2O3/water nanoparticles by using artificial neural network. Nanomater 10, 697 (2020). https://doi.org/10.3390/NANO10040697.

    Article  CAS  Google Scholar 

  54. I. Wole-Osho, E.C. Okonkwo, D. Kavaz, and S. Abbasoglu, An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids. Powder Technol. 363, 699 (2020). https://doi.org/10.1016/J.POWTEC.2020.01.015.

    Article  CAS  Google Scholar 

  55. D.P. Barai, B.A. Bhanvase, and V.K. Saharan, Reduced graphene oxide-Fe3O4 nanocomposite based nanofluids: study on ultrasonic assisted synthesis, thermal conductivity, rheology, and convective heat transfer. Ind. Eng. Chem. Res. 58, 8349 (2019). https://doi.org/10.1021/ACS.IECR.8B05733.

    Article  CAS  Google Scholar 

  56. S. Askari, H. Koolivand, M. Pourkhalil, R. Lotfi, and A. Rashidi, Investigation of Fe3O4/graphene nanohybrid heat transfer properties: experimental approach. Int. Commun. Heat Mass Transf. 87, 30 (2017). https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2017.06.012.

    Article  CAS  Google Scholar 

  57. M.M. Bhunia, K. Panigrahi, S. Das, K.K. Chattopadhyay, and P. Chattopadhyay, Amorphous graphene—transformer oil nanofluids with superior thermal and insulating properties. Carbon N. Y. 139, 1010 (2018). https://doi.org/10.1016/J.CARBON.2018.08.012.

    Article  CAS  Google Scholar 

  58. R. Karthik, and T. Sree Renga Raja, Investigations of transformer oil characteristics. IEEJ Trans. Electr. Electron. Eng. 7, 369 (2012). https://doi.org/10.1002/TEE.21742.

    Article  Google Scholar 

  59. M. Koch, M. Fischer, D.-I. Stefan, The breakdown voltage of insulation oil under the influences of humidity, acidity, particles and pressure, International Conference APTADM, pp. 26–28 (2007)

  60. J. IlJeong, J.S. An, and C.S. Huh, Accelerated aging effects of mineral and vegetable transformer oils on medium voltage power transformers. IEEE Trans. Dielectr. Electr. Insul. 19, 156 (2012). https://doi.org/10.1109/TDEI.2012.6148514.

    Article  Google Scholar 

  61. R.S. Anand, C.P. Jawahar, A.B. Solomon, J.S. Koshy, J.C. Jacob, and M.M. Tharakan, Heat transfer properties of HFE and R134a based Al2O3 nano refrigerant in thermosyphon for enhancing the heat transfer. Mater. Today Proc. 27, 268 (2020). https://doi.org/10.1016/J.MATPR.2019.11.014.

    Article  CAS  Google Scholar 

  62. M.A. Usman, O.O. Olanipekun, and U.T. Henshaw, A comparative study of soya bean oil and palm kernel oil as alternatives to transformer oil. J. Emerg. Trends Eng. Appl. Sci. 3(1), 33 (2012).

    CAS  Google Scholar 

  63. S. Sagadevan, J.A. Lett, G.K. Weldegebrieal, S. Garg, W.C. Oh, N.A. Hamizi, and M.R. Johan, Enhanced photocatalytic activity of rGO-CuO nanocomposites for the degradation of organic pollutants. Catalysts 11, 1008 (2021). https://doi.org/10.3390/CATAL11081008.

    Article  CAS  Google Scholar 

  64. R.A. Farade, N.I.A. Wahab, D.E.A. Mansour, N.B. Azis, J.B. Jasni, M.E.M. Soudagar, and V. Siddappa, Development of graphene oxide-based nonedible cottonseed nanofluids for power transformers. Materials 13, 2569 (2020). https://doi.org/10.3390/MA13112569.

    Article  CAS  Google Scholar 

  65. M. Hadadian, E.K. Goharshadi, and A. Youssefi, Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J. Nanopart. Res. 16, 1 (2014). https://doi.org/10.1007/S11051-014-2788-1/METRICS.

    Article  CAS  Google Scholar 

  66. A. Cavallini, R. Karthik, and F. Negri, The effect of magnetite, graphene oxide and silicone oxide nanoparticles on dielectric withstand characteristics of mineral oil. IEEE Trans. Dielectr. Electr. Insul. 22, 2592 (2015). https://doi.org/10.1109/TDEI.2015.005016.

    Article  CAS  Google Scholar 

  67. V.P. Charalampakos, E. Chatzikalymnios, E.C. Pyrgioti, G.D. Peppas, A. Bakandritsos, A. Polykrati, and I.F. Gonos, AC breakdown strength of natural ester oil based nanofluid with graphene nanosheets, ICHVE 2018–2018. IEEE Int. Conf. High Volt. Eng. Appl. (2019). https://doi.org/10.1109/ICHVE.2018.8641923.

    Article  Google Scholar 

  68. A.H. Aref, A.A. Entezami, H. Erfan-Niya, and E. Zaminpayma, Thermophysical properties of paraffin-based electrically insulating nanofluids containing modified graphene oxide. J. Mater. Sci. 52, 2642 (2017). https://doi.org/10.1007/S10853-016-0556-6/METRICS.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vanitha.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanitha, K., Sree Renga Raja, T. Augmenting the Insulating and Heat Transfer Properties of Silicone Oil with Filler Composite GO-CuO Nanoparticles for Transformer Applications. J. Electron. Mater. 52, 7683–7693 (2023). https://doi.org/10.1007/s11664-023-10690-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10690-6

Keywords

Navigation