Skip to main content
Log in

Effect of Stress on Electronic, Optical, Elastic, and Mechanical Properties of Potassium Tantalum Oxide (KTaO3): A DFT Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The primary purpose of this study is to perform a wide-ranging analysis of the electronic, optical, structural, elastic, and mechanical properties of cubic-structured potassium tantalum oxide (KTaO3) by applying different amounts of stress (0, 20, 40, and 60 GPa). The computational generalized gradient approximation technique is applied on cubic KTaO3 with the Perdew–Burke–Ernzerhof exchange–correlation functional. We found that applied stress causes an increase in bandgap from 1.624 eV to 1.871 eV. The partial densities of state for bulk potassium tantalum oxide (KTaO3), potassium (K), tantalum (Ta), and oxygen (O) are also predicted. In the valence band range, the dominant peaks of KTaO3 at 0 GPa, 20 GPa, 40 GPa, and 60 GPa are due to p-states. We found noteworthy variations in optical parameters such as absorption \(I\left( \omega \right)\), optical conductivity \(\sigma_{1} \left( \omega \right)\) real and \(\sigma_{2} \left( \omega \right)\) imaginary, dielectric function \(\varepsilon_{1} \left( \omega \right)\) real and \(\varepsilon_{2} \left( \omega \right)\) imaginary, loss function \(L\left( \omega \right)\), reflectivity \(R\left( \omega \right)\) and real/imaginary refractive index \(n\left( \omega \right)\) with varying stress ranging from 0 GPa to 60 GPa. The values of elastic constants are predicted (4.1741–3.8890 Å) computationally using energy deformation equations when stress is applied at 0–60 GPa. Mechanical features including bulk modulus (161.0911–426.1323), shear modulus (99.4505–153.3127), and Young's modulus (247.4334–410.6864) increase with increasing stress. The Pugh, Poisson, and Frantsevich ratios show that the material is ductile from 20 GPa to 60 GPa, while at 0 GPa, the material is brittle. Anisotropy is observed in the estimated values of KTaO3. Moreover, our predicted results reveal that the chosen material is good for optoelectronic devices because it has a high refractive index and good absorption, reflectivity, and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.A. Abraham, DFT-focused estimation of mechanical, thermoelectric and thermodynamic properties of ACdF3 (A = K, Rb, Cs) fluroperovskites. Int. J. Mod. Phys. (2019). https://doi.org/10.1142/S0217979219503144.

    Article  Google Scholar 

  2. M. Awais, I. Zeba, S.S.A. Gillani, M. Shakil, and M. Rizwan, First-principles calculations to investigate band gap of cubic BaThO3 with systematic isotropic external static pressure and its impact on structural, elastic, mechanical, anisotropic, electronic and optical properties. J. Phys. Chem. Solids 169, 110878 (2022). https://doi.org/10.1016/J.JPCS.2022.110878.

    Article  CAS  Google Scholar 

  3. A.R. Benrekia, N. Benkhettou, A. Nassour, M. Driz, M. Sahnoun, and S. Lebègue, Structural, electronic and optical properties of cubic SrTiO3 and KTaO3: ab initio and GW calculations. Physica B Condens. Matter 407, 2632–2636 (2012). https://doi.org/10.1016/J.PHYSB.2012.04.013.

    Article  CAS  Google Scholar 

  4. H. Bouafia, S. Hiadsi, B. Abidri, A. Akriche, L. Ghalouci, and B. Sahli, Structural, elastic, electronic and thermodynamic properties of KTaO3 and NaTaO3: ab initio investigations. Comput. Mater. Sci. Complete (2013). https://doi.org/10.1016/J.COMMATSCI.2013.03.030.

    Article  Google Scholar 

  5. S. Cabuk, Ab initio volume-dependent elastic and lattice dynamics properties of KTaO3. Physica Status Solidi (b) 247, 93–97 (2010). https://doi.org/10.1002/PSSB.200945294.

    Article  CAS  Google Scholar 

  6. S. Cabuk, H. Akkus, and A.M. Mamedov, Electronic and optical properties of KTaO3: ab initio calculation. Physica B Condens. Matter 394, 81–85 (2007). https://doi.org/10.1016/J.PHYSB.2007.02.012.

    Article  CAS  Google Scholar 

  7. C. Dotzler, G.V.M. Williams, and A. Edgar, Radiation-induced optically and thermally stimulated luminescence in RbCdF3 and RbMgF3. Curr. Appl. Phys. 8, 447–450 (2008). https://doi.org/10.1016/J.CAP.2007.10.078.

    Article  Google Scholar 

  8. A.B. Ellis, S.W. Kaiser, and M.S. Wrighton, Semiconducting potassium tantalate electrodes. Photoassistance agents for the efficient electrolysis of water. J. Phys. Chem. 80, 1325–1328 (1976). https://doi.org/10.1021/J100553A014/ASSET/J100553A014.FP.PNG_V03.

    Article  CAS  Google Scholar 

  9. B. Fadila, M. Ameri, D. Bensaid, M. Noureddine, I. Ameri, S. Mesbah, and Y. Al-Douri, Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018). https://doi.org/10.1016/J.JMMM.2017.06.048.

    Article  CAS  Google Scholar 

  10. S. Ganeshan, S.L. Shang, H. Zhang, Y. Wang, M. Mantina, and Z.K. Liu, Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics (Barking) 17, 313–318 (2009). https://doi.org/10.1016/J.INTERMET.2008.11.005.

    Article  CAS  Google Scholar 

  11. P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PHYSREV.136.B864/FIGURE/1/THUMB.

    Article  Google Scholar 

  12. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, Prediction of lattice constant in cubic perovskites. JPCS 67, 1531–1536 (2006). https://doi.org/10.1016/J.JPCS.2006.02.004.

    Article  CAS  Google Scholar 

  13. W. Kohn, Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999). https://doi.org/10.1103/RevModPhys.71.1253.

    Article  CAS  Google Scholar 

  14. W. Kohn, and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PHYSREV.140.A1133/FIGURE/1/THUMB.

    Article  Google Scholar 

  15. A. Kudo, and H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett. 331, 373–377 (2000). https://doi.org/10.1016/S0009-2614(00)01220-3.

    Article  CAS  Google Scholar 

  16. H.C. Li, W. Si, A.D. West, and X.X. Xi, Thickness dependence of dielectric loss in SrTiO3 thin films. Appl. Phys. Lett. 73, 464 (1998). https://doi.org/10.1063/1.121901.

    Article  CAS  Google Scholar 

  17. X. Liu, W. Lv, C. Chen, W. Yang, J. Han, J. Lin, and H. Sun, Structural, electronic and optical properties of KTaO3 under high pressure based on first-principles. Mater. Sci. Semicond. Process. 138, 106248 (2022). https://doi.org/10.1016/J.MSSP.2021.106248.

    Article  CAS  Google Scholar 

  18. B. Modak, and S.K. Ghosh, An efficient strategy for controlled band gap engineering of KTaO3. J. Phys. Chem. C 120, 6920–6929 (2016). https://doi.org/10.1021/ACS.JPCC.5B11777/ASSET/IMAGES/MEDIUM/JP-2015-117774_0014.GIF.

    Article  CAS  Google Scholar 

  19. G. Murtaza, K.R. Hayatullah, M.N. Khalid, and S. Naeem, Elastic and optoelectronic properties of RbMF3 (M = Zn, Cd, Hg): a mBJ density functional calculation. Physica B Condens. Matter 410, 131–136 (2013). https://doi.org/10.1016/J.PHYSB.2012.10.024.

    Article  CAS  Google Scholar 

  20. T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D.A. Pawlak, K. Shimamura, and T. Fukuda, Band structures of perovskite-like fluorides for vacuum-ultraviolet-transparent lens materials. Jpn. J. Appl. Phys. Part 2 Lett. 41, L365 (2002). https://doi.org/10.1143/JJAP.41.L365/XML.

    Article  CAS  Google Scholar 

  21. P. Paufler, Landolt-Börnstein. Numerical data and functional relationships in science and technology. New Series, Editor in Chief: K. H. Hellwege. Group III, Crystal and Solid State Physics, Vol. 7, Crystal Structure Data of Inorganic Compounds, W. Pies, A. Weiss, Part b, Key Elements O, S, Se, Te, b3: Key Elements S, Se, Te, Editors: K. H. Hellwege, A. M. Hellwege, Springer-Verlag, Berlin 1982, XXVII, 435 Seiten. Leinen, Preis: DM 740. Cryst. Res. Technol. 18, 1318–1318 (1983). https://doi.org/10.1002/CRAT.2170181018.

    Article  Google Scholar 

  22. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (2009). https://doi.org/10.1080/14786440808520496.

    Article  Google Scholar 

  23. M. Rizwan, M. Farman, A. Akgül, Z. Usman, S. Anam, M. Rizwan, M. Farman, A. Akgül, Z. Usman, and S. Anam, Variation in electronic and optical responses due to phase transformation of SrZrO3 from cubic to orthorhombic under high pressure: a computational insight. InJPh 96, 1–9 (2022). https://doi.org/10.1007/S12648-021-02031-2.

    Article  CAS  Google Scholar 

  24. M. Rizwan, I. Iqra, S.S.A. Gillani, I. Zeba, M. Shakil, Z. Usman, M. Rizwan, I. Iqra, S.S.A. Gillani, I. Zeba, M. Shakil, and Z. Usman, First-principles investigation of structural, electronic, and optical response of SnZrO3 with Al inclusion for optoelectronic applications. PhSS 63, 134–140 (2021). https://doi.org/10.1134/S1063783421010182.

    Article  CAS  Google Scholar 

  25. M. Rizwan, A. Khadija, I. Zeba, M. Shakil, Z. Usman, and S.S.A. Gillani, First-principles investigation of structural modification, fine band gap engineering, and optical response of La1−xBaxGaO3 for optoelectronic applications. Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/S00339-020-03813-X.

    Article  Google Scholar 

  26. S. Sarfraz, S.A. Aldaghfag, M.K. Butt, M. Yaseen, M. Zahid, and A. Dahshan, Physical properties of KTaO3 compound for optoelectronic and thermoelectric applications: a DFT study. Mater. Sci. Semicond. Process. 148, 106811 (2022). https://doi.org/10.1016/J.MSSP.2022.106811.

    Article  CAS  Google Scholar 

  27. Y. Su, J. Lang, L. Li, K. Guan, C. Du, L. Peng, D. Han, and X. Wang, Unexpected catalytic performance in silent tantalum oxide through nitridation and defect chemistry. J. Am. Chem. Soc. 135, 11433–11436 (2013). https://doi.org/10.1021/JA404239Z/SUPPL_FILE/JA404239Z_SI_001.PDF.

    Article  CAS  Google Scholar 

  28. A. Tagantsev, dc-electric-field-induced microwave loss in ferroelectrics and intrinsic limitation for the quality factor of a tunable component. Appl. Phys. Lett. 76, 1182 (2000). https://doi.org/10.1063/1.125976.

    Article  CAS  Google Scholar 

  29. S. Tariq, A. Ahmed, S. Saad, and S. Tariq, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study. AIP Adv. 5, 077111 (2015). https://doi.org/10.1063/1.4926437.

    Article  CAS  Google Scholar 

  30. S. Touam, R. Belghit, R. Mahdjoubi, Y. Megdoud, H. Meradji, M.S. Khan, R. Ahmed, R. Khenata, S. Ghemid, D.P. Rai, and Y. Al-Douri, First-principles computations of YxGa1–x As-ternary alloys: a study on structural, electronic, optical and elastic properties. Bull. Mater. Sci. (2020). https://doi.org/10.1007/S12034-019-1978-Y.

    Article  Google Scholar 

  31. V. Vikhnin, S. Eden, M. Aulich, and S. Kapphan, The origin of the red luminescence in incipient ferroelectric KTaO3. Solid State Commun. 113, 455–460 (2000). https://doi.org/10.1016/S0038-1098(99)00506-2.

    Article  CAS  Google Scholar 

  32. G.G. Yakobson, and N.E. Akhmetova, Alkali metal fluorides in organic synthesis. Synthesis (Germany) 1983, 169–184 (1983). https://doi.org/10.1055/S-1983-30271/BIB.

    Article  Google Scholar 

  33. I. Zeba, R. Jabeen, R. Ahmad, M. Shakil, M. Rafique, M. Rizwan, N. Bashir, and S.S.A. Gillani, Effect of anomalous behavior of Be-doping on structural stability, bandgap and optical properties in comparison with Mg-doped BaZrO3 perovskite: insights from DFT calculations. Opt. Quantum Electron. 52, 1–14 (2020). https://doi.org/10.1007/S11082-020-02349-X.

    Article  Google Scholar 

  34. I. Zeba, M. Ramzan, R. Ahmad, M. Shakil, M. Rizwan, M. Rafique, M. Sarfraz, M. Ajmal, and S.S.A. Gillani, First-principles computation of magnesium doped CaZrO3 perovskite: a study of phase transformation, bandgap engineering and optical response for optoelectronic applications. Solid State Commun. 313, 113907 (2020). https://doi.org/10.1016/J.SSC.2020.113907.

    Article  CAS  Google Scholar 

  35. N. Zhao, Y.H. Wang, Q.X. Wang, and W.J. Hu, First-principles calculations of the electronic structure and optical properties of K1−xNaxTaO3 (x = 0, 0.25, 0.5, 0.75, 1). J. Solid State Chem. 194, 37–42 (2012). https://doi.org/10.1016/J.JSSC.2012.07.041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Ethics declarations

Conflict of interest

There is no conflict of interest among authors regarding this publication. All authors contributed equally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Zaidi, S.M.J., Sahar, M.S.U. et al. Effect of Stress on Electronic, Optical, Elastic, and Mechanical Properties of Potassium Tantalum Oxide (KTaO3): A DFT Study. J. Electron. Mater. 52, 5631–5641 (2023). https://doi.org/10.1007/s11664-023-10484-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10484-w

Keywords

Navigation