Skip to main content
Log in

Numerical Optimization of Cu2O as HTM in Lead-Free Perovskite Solar Cells: A Study to Improve Device Efficiency

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu2O is a promising hole transport material (HTM) that offers the possibility to improve the power conversion efficiency (PCE) of the perovskite solar cells (PSCs). An escalation in the PCE of the non-toxic perovskite structures depends on the optimization of the HTM. This work aims to improve the PCE of the Cu2O/CH3NH3SnI3/PCBM/FTO and Cu2O/CH3NH3GeI3/PCBM/FTO solar cells by numerical simulation using SCAPS-1D. The variation of band-gap (2.0–2.6 eV), electron affinity (3.0–3.6 eV), acceptor density (1017–1022 cm−3) and defect density (1017–1022 cm−3) of Cu2O as HTM has been studied and optimized for obtaining maximum PCE of the solar cells. The energy band diagrams of the solar cell structures are compared at the optimized band-gap of Cu2O. The optimum absorber perovskite layer thickness is also investigated. Pt is proposed as the most suitable back contact metal for both solar cells. The photovoltaic parameters of the Cu2O/CH3NH3SnI3/PCBM/FTO solar cell are VOC = 0.96 V, JSC = 33.91 mA/cm2, FF = 81.36% and PCE = 27.08%. The photovoltaic parameters of the Cu2O/CH3NH3GeI3/PCBM/FTO solar cell are VOC = 1.89 V, JSC = 15.86 mA/cm2, FF = 88.82% and PCE = 26.68%. Both the solar cells showcased remarkable enhancement of PCE, which is higher than previous reports. The simulation results provide a viable route in the future to design highly efficient and stable Pb-free perovskite solar cells with modified electrical parameters of Cu2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Walsh, Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119(11), 5755–5760 (2015).

    Article  CAS  Google Scholar 

  2. Y. Zhou and W. Chen, Hybrid organic–inorganic halide perovskites. J. Appl. Phys. 128, 200401 (2020).

    Article  CAS  Google Scholar 

  3. K.P. Bhandari and R.J. Ellingson, An overview of hybrid organic–inorganic metal halide perovskite solar cells, in A Comprehensive Guide to Solar Energy Systems (2018), pp. 233–254. https://doi.org/10.1016/B978-0-12-811479-7.00011-7.

  4. P. Roy, N.K. Sinha, S. Tiwari, and A. Khare, A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 198, 665–688 (2020).

    Article  CAS  Google Scholar 

  5. N.S. Kumar and K.C.B. Naidu, A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics 7(5), 940–956 (2021).

    Article  Google Scholar 

  6. B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, Semitransparent perovskite solar cells: from materials and devices to applications. Adv. Mater. 32, 1806474 (2019).

    Article  Google Scholar 

  7. M. Petrović, V. Chellappan, and S. Ramakrishna, Perovskites: solar cells & engineering applications—materials and device developments. Sol. Energy 122, 678–699 (2015).

    Article  Google Scholar 

  8. Y. Tu, J. Wu, G. Xu, X. Yang, R. Cai, Q. Gong, R. Zhu, and W. Huang, Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33, 2006545 (2021).

    Article  CAS  Google Scholar 

  9. Z. Qiu, N. Li, Z. Huang, Q. Chen, and H. Zhou, Recent advances in improving phase stability of perovskite solar cells. Small Methods 4(5), 1900877 (2020).

    Article  CAS  Google Scholar 

  10. J. Yin, J. Cao, X. He, S. Yuan, S. Sun, J. Li, N. Zheng, and L. Lin, Improved stability of perovskite solar cells in ambient air by controlling mesoporous layer. J. Mater. Chem. A 3, 16860–16866 (2015).

    Article  CAS  Google Scholar 

  11. D. Wang, M. Wright, N.K. Elumalai, and A. Uddin, Review stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016).

    Article  CAS  Google Scholar 

  12. F. Bella, G. Griffini, J.P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, and C. Gerbaldi, Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016).

    Article  CAS  Google Scholar 

  13. J. Wei, H. Li, Y. Zhao, W. Zhou, R. Fu, Y. Leprince-Wang, D. Yu, and Q. Zhao, Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy 26, 139–147 (2016).

    Article  CAS  Google Scholar 

  14. S.N. Habisreutinger, D.P. McMeekin, H.J. Snaith, and R.J. Nicholas, Research update: strategies for improving the stability of perovskite solar cells. APL Mater. 4, 091503 (2016).

    Article  Google Scholar 

  15. B. Coulibaly et al., Comparative study of lead-free perovskite solar cells using different hole transporter materials. Model. Numer. Simul. Mater. Sci. 9(4), 97–107 (2019). https://doi.org/10.4236/mnsms.2019.94006.

    Article  CAS  Google Scholar 

  16. S.J. Adjogri and E.L. Meyer, A review on lead-free hybrid halide perovskites as light absorbers for photovoltaic applications based on their structural, optical, and morphological properties. Molecules 25, 5039 (2020).

    Article  CAS  Google Scholar 

  17. S. Abdelaziz, A. Zekry, A. Shaker, and M. Abouelatta, Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020).

    Article  CAS  Google Scholar 

  18. A. Sunny, S. Rahman, M.M. Khatun, and S.R. Al Ahmeda, Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Adv. 11, 065102 (2021).

    Article  CAS  Google Scholar 

  19. A. Kanoun, M.B. Kanoun, A.E. Merad, and S. Goumri-Said, Towards the development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Sol. Energy 182, 237–244 (2019).

    Article  CAS  Google Scholar 

  20. N. Lakhdar and A. Hima, Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020).

    Article  CAS  Google Scholar 

  21. A.C.P. Reyes, R.C.A. Lázaro, K.M. Leyva, J.A.L. López, J.F. Méndez, A.H.H. Jiménez, A.L.M. Zurita, F.S. Carrillo, and E.O. Durán, Study of a lead-free perovskite solar cell using CZTS as HTL to achieve a 20% PCE by SCAPS-1D simulation. Micromachines 12, 1508 (2021).

    Article  Google Scholar 

  22. F. Baig, Y.H. Khattak, B. Marí, S. Beg, A. Ahmed, and K. Khan, Efficiency enhancement of CH3NH3SnI3 solar cells by device modeling. J. Electron. Mater. 47, 5275–5282 (2018).

    Article  CAS  Google Scholar 

  23. Z. Omarova, D. Yerezhep, A. Aldiyarov, and N. Tokmoldin, In silico investigation of the impact of hole-transport layers on the performance of CH3NH3SnI3 perovskite photovoltaic cells. Crystals 12, 699 (2022).

    Article  CAS  Google Scholar 

  24. A. Hima and N. Lakhdar, Design and simulation of homojunction perovskite CH3NH3GeI3 solar cells. Indian J. Phys. (2022). https://doi.org/10.1007/s12648-022-02419-8.

    Article  Google Scholar 

  25. P.K. Patel, Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Sci. Rep. 11, 3082 (2021).

    Article  CAS  Google Scholar 

  26. A. Hima and N. Lakhdar, Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2. Opt. Mater. 99, 109607 (2020).

    Article  CAS  Google Scholar 

  27. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  Google Scholar 

  28. J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J.J. McDowell, P. Kanjanaboos, J.P. Sun, X. Lan, L.N. Quan, D.H. Kim, I.G. Hill, P. Maksymovych, and E.H. Sargent, Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015).

    Article  CAS  Google Scholar 

  29. T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, Current status and future prospects of copper oxide heterojunction solar cells. Materials 9, 271 (2016).

    Article  CAS  Google Scholar 

  30. A. Roy and A. Majumdar, Optimization of CuO/CdTe/CdS/TiO2 solar cell efficiency: a numerical simulation modeling. Optik 251, 168456 (2022).

    Article  CAS  Google Scholar 

  31. L. Lin, L. Jiang, P. Li, B. Fan, and Y. Qiu, A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low temperature processing. J. Phys. Chem. Solids 124, 205–211 (2019).

    Article  CAS  Google Scholar 

  32. M. Shasti and A. Mortezaali, Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole transport materials for application in perovskite solar cells. Phys. Status Solidi A 216(18), 1900337 (2019).

    Article  Google Scholar 

  33. M.I. Hossain, F.H. Alharbi, and N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 120, 370–380 (2015).

    Article  CAS  Google Scholar 

  34. G. Papadimitropoulos, N. Vourdas, V. Em Vamvakas, and D. Davazoglou, Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films 515, 2428–2432 (2006).

    Article  CAS  Google Scholar 

  35. M. Burgelman, P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000).

    Article  Google Scholar 

  36. M. Burgelman, K. Decock, S. Khelifi, and A. Abass, Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296–301 (2013).

    Article  CAS  Google Scholar 

  37. K. Decock, P. Zabierowski, and M. Burgelman, Modeling metastabilities in chalcopyrite-based thin film solar cells. J. Appl. Phys. 111, 043703 (2012).

    Article  Google Scholar 

  38. J. Verschraegen and M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films 515, 6276–6279 (2007).

    Article  CAS  Google Scholar 

  39. J.A. Owolabi, M.Y. Onimisi, J.A. Ukwenya, A.B. Bature, and U.R. Ushiekpan, Investigating the effect of ZnSe (ETM) and Cu2O (HTM) on absorber layer on the performance of pervoskite solar cell using SCAPS-1D. Am. J. Phys. Appl. 8(1), 8–18 (2020).

    Google Scholar 

  40. C. Zuo and L. Ding, Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11(41), 5528–5532 (2015). https://doi.org/10.1002/smll.201501330.

    Article  CAS  Google Scholar 

  41. L. Liu, Q. Xi, G. Gao, W. Yang, H. Zhou, Y. Zhao, C. Wu, L. Wang, and J. Xu, Cu2O particles mediated growth of perovskite for high efficient hole-transporting-layer free solar cells in ambient conditions. Sol. Energy Mater. Sol. Cells 157, 937–942 (2016).

    Article  CAS  Google Scholar 

  42. L. Zhou, J. Chang, Z. Liu, X. Sun, Z. Lin, D. Chen, C. Zhang, J. Zhang, and Y. Hao, Enhanced planar perovskite solar cells efficiency and stability using perovskite/PCBM heterojunction through one-step formation. Nanoscale 10, 3053–3059 (2018).

    Article  CAS  Google Scholar 

  43. Y. Zhong, M. Hufnagel, M. Thelakkat, C. Li, and S. Huettner, Role of PCBM in the suppression of hysteresis in perovskite solar cells. Adv. Funct. Mater. 30(23), 1908920 (2020).

    Article  CAS  Google Scholar 

  44. S.A. Moiz, Optimization of hole and electron transport layer for highly efficient lead-free Cs2TiBr6-based perovskite solar cell. Photonics 9, 23 (2022).

    Article  CAS  Google Scholar 

  45. S. Bhattarai and T.D. Das, Optimization of carrier transport materials for the performance enhancement of the MAGeI3 based perovskite solar cell. Sol. Energy 217, 200–207 (2021).

    Article  CAS  Google Scholar 

  46. M. Gagandeep, R. Singh, and V. Kumar, Singh, Investigation of CH3NH3PbI3 and CH3NH3SnI3 based perovskite solar cells with CuInSe2 nanocrystals. Optik 246, 167839 (2021).

    Article  CAS  Google Scholar 

  47. K. Kumari, A. Jana, A. Dey, T. Chakrabarti, and S.K. Sarkar, Lead free CH3NH3SnI3 based perovskite solar cell using ZnTe nano flowers as hole transport layer. Opt. Mater. 111, 110574 (2021).

    Article  CAS  Google Scholar 

  48. M. Mottakin, K. Sobayel, D. Sarkar, H. Alkhammash, S. Alharthi, K. Techato, M. Shahiduzzaman, N. Amin, K. Sopian, and M. Akhtaruzzaman, Design and modelling of eco-friendly CH3NH3SnI3-based perovskite solar cells with suitable transport layers. Energies 14, 7200 (2021).

    Article  CAS  Google Scholar 

  49. A. Kumar and S. Singh, Numerical modeling of planar lead free perovskite solar cell using tungsten disulfide (WS2) as an electron transport layer and Cu2O as a hole transport layer. Mod. Phys. Lett. B 34(24), 2050258 (2020).

    Article  CAS  Google Scholar 

  50. J. Jiménez-López, W. Cambarau, L. Cabau, and E. Palomares, Charge injection, carriers recombination and HOMO energy level relationship in perovskite solar cells. Sci. Rep. 7, 6101 (2017).

    Article  Google Scholar 

  51. S. Naqvi and A. Patra, Hole transport materials for perovskite solar cells: a computational study. Mater. Chem. Phys. 258, 123863 (2021).

    Article  CAS  Google Scholar 

  52. S. Sajid, S. Alzahmi, I.B. Salem, and I.M. Obaidat, Guidelines for fabricating highly efficient perovskite solar cells with Cu2O as the hole transport material. Nanomaterials 12, 3315 (2022).

    Article  CAS  Google Scholar 

  53. W.J. Chi, D.Y. Zheng, X.F. Chen, and Z.S. Li, Optimizing thienothiophene chain lengths of D-π-D hole transport materials in perovskite solar cells to improving energy levels and hole mobility. J. Mater. Chem. C 5, 10055–10060 (2017).

    Article  CAS  Google Scholar 

  54. X. Yin et al., Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy 51, 680–687 (2018).

    Article  CAS  Google Scholar 

  55. B.A. Nejand, V. Ahmadi, S. Gharibzadeh, and H.R. Shahverdi, Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells. Chemsuschem 9(3), 302–313 (2016). https://doi.org/10.1002/cssc.201501273.

    Article  CAS  Google Scholar 

  56. C. Malerba, F. Biccari, C.L.A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, Absorption coefficient of bulk and thin film Cu2O. Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).

    Article  CAS  Google Scholar 

  57. B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller, and C. Ronning, Binary copper oxide semiconductors: from materials towards devices. Phys. Status Solidi B (2012). https://doi.org/10.1002/pssb.201248128.

    Article  Google Scholar 

  58. N. Gupta, R. Singh, F. Wu, J. Narayan, C. McMillen, G.F. Alapatt, K.F. Poole, S. Hwu, D. Sulejmanovic, M.Y.G. Teeter, and H.S. Ullal, Deposition and characterization of nanostructured Cu2O thin-film for potential photovoltaic applications. J. Mater. Res. 28, 13 (2013). https://doi.org/10.1557/jmr.2013.150.

    Article  CAS  Google Scholar 

  59. T. Maruyama, Copper oxide thin films prepared from copper dipivaloylmethanate and oxygen by chemical vapor deposition. Jpn. J. Appl. Phys. 37(7), 4099 (1998).

    Article  CAS  Google Scholar 

  60. B. Balamurugan and B.R. Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396, 90–96 (2001).

    Article  CAS  Google Scholar 

  61. D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, and A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: optical and electrical properties. AIP Adv. 5, 047143 (2015).

    Article  Google Scholar 

  62. M.I. Hossain, B. Aïssa, A. Bentouaf, and S. Mansour, Bandgap tuning of high mobility magnetron sputtered copper(I) oxide thin films for perovskite solar cell applications. J. Thin Films Res. 5(1), 51–54 (2021).

    Article  Google Scholar 

  63. W. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, B. Lin, L. Wang, M.N. Hedhili, Y. Li, K. Wu, X. Wang, O.F. Mohammed, and T. Wu, Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8, 6173–6179 (2016).

    Article  CAS  Google Scholar 

  64. M. Abdelfatah, W. Ismail, N.M. El-Shafai, and A. El-Shaer, Effect of thickness, bandgap, and carrier concentration on the basic parameters of Cu2O nanostructures photovoltaics: numerical simulation study. Mater Technol. 36(12), 712–720 (2021).

    Article  CAS  Google Scholar 

  65. S. Chatterjee and A.J. Pal, Introducing Cu2O thin-films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120(3), 1428–1437 (2016).

    Article  CAS  Google Scholar 

  66. J.E. Castellanos-Águila, L. Lodeiro, E. Menendez-Proupin, A.L. Montero-Alejo, P. Palacios, J.C. Conesa, and P. Wahnón, Atomic scale model and electronic structure of Cu2O/CH3NH3PbI3 interfaces in perovskite solar cells. ACS Appl. Mater. Interfaces 12(40), 44648–44657 (2020).

    Article  Google Scholar 

  67. H. Kanda et al., Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly (silazane) precursor. Energy Environ. Sci. 13, 1222 (2020).

    Article  CAS  Google Scholar 

  68. H. Qiu and J.M. Mativetsky, Elucidating the role of ion migration and band bending in perovskite solar cell function at grain boundaries via multimodal nanoscale mapping. Adv. Mater. Interfaces 8, 2001992 (2021).

    Article  CAS  Google Scholar 

  69. Z. Zhang and J.T. Yates, Band bending in semiconductors chemical physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012).

    Article  CAS  Google Scholar 

  70. J. Byeon, J. Kim, J.Y. Kim, G. Lee, K. Bang, N. Ahn, and M. Choi, Charge transport layer dependent electronic band bending in perovskite solar cells and its correlation to light induced device degradation. ACS Energy Lett. 5(8), 2580–2589 (2020).

    Article  CAS  Google Scholar 

  71. Y. He, L. Xu, C. Yang, X. Guo, and S. Li, Design and numerical investigation of a lead-free inorganic layered double perovskite Cs4CuSb2Cl12 nanocrystal solar cell by SCAPS-1D. Nanomaterials 11, 2321 (2021).

    Article  CAS  Google Scholar 

  72. N. Ghalambaz, J. Ganji, and P. Shabani, Investigation of the planar and inverted structure of Cu2O/CH3NH3PbI3/PCBM perovskite solar cell with and without the CH3NH3SnI3 layer. Opt. Quantum Electron. 53, 315 (2021). https://doi.org/10.1007/s11082-021-02918-8.

    Article  CAS  Google Scholar 

  73. J.Y. Jeng, K.C. Chen, T.Y. Chiang, P.Y. Lin, T.D. Tsai, Y.C. Chang, T.F. Guo, P. Chen, T.C. Wen, and Y.J. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26(24), 4107–4113 (2014).

    Article  CAS  Google Scholar 

  74. Y. Gan, X. Bi, Y. Liu, B. Qin, Q. Li, Q. Jiang, and P. Mo, Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 13, 5907 (2020).

    Article  CAS  Google Scholar 

  75. T. Minemoto and M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015).

    Article  CAS  Google Scholar 

  76. S. Subramanian, R. Valantina, and C. Ramanathan, Structural and electronic properties of CuO, CuO2 and Cu2O nanoclusters—a DFT approach. Electron. Opt. Mater. 21, 2 (2015). https://doi.org/10.5755/j01.ms.21.2.6459.

    Article  Google Scholar 

  77. H. Du, W. Wang, and J. Zhu, Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 25(10), 108802 (2016).

    Article  Google Scholar 

  78. A.J. Kale, R. Chaurasiya, and A. Dixit, Inorganic lead-free Cs2AuBiCl6 perovskite absorber and Cu2O hole transport material based single-junction solar cells with 22.18% power conversion efficiency. Adv. Theory Simul. 4(3), 2000224 (2021).

    Article  CAS  Google Scholar 

  79. J. Herterich, C. Baretzky, M. Unmüssig, C. Maheu, N. Glissmann, J. Gutekunst, G. Loukeris, T. Mayer, M. Kohlstädt, J.P. Hofmann, and U. Würfel, Toward understanding the short-circuit current loss in perovskite solar cells with 2D passivation layers. Sol. RRL 6(7), 2200195 (2022).

    Article  CAS  Google Scholar 

  80. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, and A. Bakin, Fabrication and characterization of low cost Cu2O/ZnO: Al solar cells for sustainable photovoltaics with earth abundant materials. Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).

    Article  CAS  Google Scholar 

  81. T.R. Lenka, A.C. Soibam, S.K. Tripathy, K. Dey, P.S. Menon, M. Thway, F. Lin, and A.G. Aberle, Device modeling for high efficiency lead free perovskite solar cell with Cu2O as hole transport material, in IEEE 14th Nanotechnology Materials and Devices Conference (NMDC) (2019), pp. 1–4. https://doi.org/10.1109/NMDC47361.2019.9084004.

  82. V.A. Trukhanov, V.V. Bruevich, and DYu. Paraschuk, Effect of doping on performance of organic solar cells. Phys. Rev. B 84, 205318 (2011).

    Article  Google Scholar 

  83. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, and L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  CAS  Google Scholar 

  84. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, and A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293(5530), 673–676 (2001). https://doi.org/10.1126/science.1061655.

    Article  CAS  Google Scholar 

  85. N. Thakur, R. Mehra, and C. Devi, Efficient design of perovskite solar cell using parametric grading of mixed halide perovskite and copper iodide. J. Electron. Mater. 47, 6935–6942 (2018).

    Article  CAS  Google Scholar 

  86. A. Tara, V. Bharti, S. Sharma, and R. Gupta, Device simulation of FASnI3 based perovskite solar cell with Zn(O0.3, S0.7) as electron transport layer using SCAPS-1D. Opt. Mater. 119, 11362 (2021).

    Article  Google Scholar 

  87. B.G.H.M. Groeneveld, M. Najafi, B. Steensma, S. Adjokatse, H. Fang, F. Jahani, L. Qiu, G.H. Brink, J.C. Hummelen, and M.A. Loi, Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer. APL Mater. 5, 076103 (2017).

    Article  Google Scholar 

  88. F. Anwar, S. Afrin, S.S. Satter, R. Mahbub, and S.M. Ullah, Simulation and performance study of nanowire CdS/CdTe solar cell. Int. J. Renew. Energy Res. 7(2), 885–893 (2017).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. M. Burgelman and his co-workers, Department of Electronics and Information Systems, University of Gent, Belgium for supporting with SCAPS simulation software.

Funding

No external funding was received for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishek Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Majumdar, A. Numerical Optimization of Cu2O as HTM in Lead-Free Perovskite Solar Cells: A Study to Improve Device Efficiency. J. Electron. Mater. 52, 2020–2033 (2023). https://doi.org/10.1007/s11664-022-10181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10181-0

Keywords

Navigation