Skip to main content
Log in

Efficient Design of Perovskite Solar Cell Using Parametric Grading of Mixed Halide Perovskite and Copper Iodide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The inevitable energy demands in today’s world have shifted the interest of many researchers toward one of the fastest growing technologies, perovskite solar cells (PSCs). Because of its esteemed performance, high absorbance, and cost-effective fabrication as compared to the existing methodologies, PSCs are eminently preferred. In this study, logical device simulation of the mixed halide with chlorine as a derivative halide (CH3NH3PbI3−XClX), an absorber layer, is characterized by bandgaps, absorption coefficient, thickness, doping concentration, etc. With the need for a highly efficient solar cell, a deliberate choice of its constituting materials is also a challenging job. Performance of a mixed halide perovskite solar cell (PSC) using copper iodide (CuI) as a hole transport material (HTM) boosts the device performance. Simulation results of the optimized design show high proficiency to the existing model as the power conversion efficiency (PCE) and fill factor (FF) is increased by 3.42% and 4.85%, respectively, at an increased short-circuit current density (JSC) and a comparable open-circuit voltage (VOC). The result also shows compatibility between alloy material as an electron transport material and an inorganic HTM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.S. Yang, B. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, and S. Seok, Science 356, 6345 (2017).

    Article  Google Scholar 

  2. N. Rajamanickam, S. Kumari, V.K. Vendra, B.W. Lavery, J. Spurgeon, T. Druffle, and M.K. Sunkara, Nanotechnology 27, 235404 (2016).

    Article  Google Scholar 

  3. K. Lim, H. Kim, J. Jeong, H. Kim, J.Y. Kim, and T. Lee, Adv. Mater. 26, 6461 (2014).

    Article  CAS  Google Scholar 

  4. Y. Yue, N. Salim, Y. Wu, X. Yang, and A. Islam, Adv. Mater. 28, 10738 (2016).

    Article  CAS  Google Scholar 

  5. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, and H.J. Snaith, Nat. Commun. 4, 2885 (2013).

    Article  Google Scholar 

  6. S. Ito, S. Tanaka, K. Manabe, and H. Nishino, J. Phys. Chem. C 118, 16995 (2014).

    Article  CAS  Google Scholar 

  7. J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, and W. Lau, J. Mater. Chem. A. 3, 11750 (2015).

    Article  CAS  Google Scholar 

  8. I. Hwang and K. Yong, ACS Appl. Mater. Interfaces 8, 6 (2016).

    Article  Google Scholar 

  9. D. Patidar, N.S. Saxena, and T.P. Sharma, J. Mod. Opt. 55, 1 (2008).

    Article  Google Scholar 

  10. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 4 (2013).

    Article  Google Scholar 

  11. D. Wang, M. Wright, N.K. Elumalai, and A. Uddin, Sol. Energy Mater. Sol. Cells 147, 255 (2016).

    Article  CAS  Google Scholar 

  12. L. Wang, H. Dong, L. Wang, N. Li, X. Guo, J. Li, Y. Qiu, M.B. Carvalho, A. Sarkar, K. Nazereruddin Md, M. Gratzel, and S.I. Seok, J. Mater. Chem. A2, 13587 (2014).

    Google Scholar 

  13. R.S. Sanchez and E. Mas-marza, Sol. Energy Mater. Sol. Cells 158, 189 (2016).

    Article  CAS  Google Scholar 

  14. X. Zhao and N. Park, Photonics 2, 1139 (2015).

    Article  CAS  Google Scholar 

  15. J.-Y. Zhang, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen, Adv. Mater. 25, 3727 (2013).

    Article  Google Scholar 

  16. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, and Sang Hyuk Im, Energy Environ. Sci. 8, 1602 (2015).

    Article  CAS  Google Scholar 

  17. W.-Y. Chen, L.-L. Deng, S.-M. Dai, X. Wang, C.-B. Tian, X.-X. Zhan, S.-Y. Xie, R.-B. Huang, and L.-S. Zheng, J. Mater. Chem. A. 3, 19353 (2015).

    Article  CAS  Google Scholar 

  18. Y. Zhang, X. Hu, L. Chen, Z. Huang, Q. Fu, Y. Liu, L. Zhang, and Y. Chen, Org. Electron. 30, 281 (2016).

    Article  Google Scholar 

  19. H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, Chem. Commun. 49, 66 (2013).

    Article  Google Scholar 

  20. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, and H.J. Snaith, Nano Lett. 14, 10 (2014).

    Article  Google Scholar 

  21. T. Leijtens, T. Giovenzana, S.N. Habisreutinger, J.S. Tinkham, N.K. Noel, B.A. Kamino, G. Sadoughi, A. Sellinger, and H.J. Snaith, ACS Appl. Mater. Interfaces 8, 9 (2016).

    Article  Google Scholar 

  22. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H. Kim, A. Sarkar, M.K. Nazeeruddin, M. Gratzel, and S. Seok, Nat. Photonics 7, 486 (2013).

    Article  CAS  Google Scholar 

  23. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S. II Seok, Science 348, 1234 (2015).

    Article  CAS  Google Scholar 

  24. A. Fakharuddin, R. Jose, T.M. Brown, and F. Fabregat-Santiago, J. Bisquert Energy Environ. Sci. 7, 12 (2014).

    Google Scholar 

  25. R. Roesch, T. Faber, E. Von Hauff, T.M. Brown, M. Lira-cantu, and H. Hoppe, Adv. Energy Mater. 5, 1501407 (2015).

    Article  Google Scholar 

  26. M.H. Li, J.H. Yum, S.J. Moon, and P. Chen, Energies 9, 331 (2016).

    Article  Google Scholar 

  27. X. Li, J. Yang, Q. Jiang, W. Chu, D. Zhang, Z. Zhou, and J. Xin, ACS Appl. Mater. Interfaces 9, 41354 (2017).

    Article  CAS  Google Scholar 

  28. M.N. Amalina, Y. Azilawati, N.A. Rasheid, and M. Rusop, Proc. Eng. 56, 731 (2016).

    Article  Google Scholar 

  29. C. Yang, M. Knei, M. Lorenz, and M. Grundmann, Proc. Natl. Acad. Sci. 113, 46 (2016).

    Article  Google Scholar 

  30. P. Zhang, Z. Zhou, D. Kou, and S. Wu, Int. J. Photoenergy. Article id. 6109092 (2017).

  31. M.-H. Li, J.-H. Yum, S.-J. Moon, and P. Chen, Energies 9, 5 (2016).

    Google Scholar 

  32. C. Yang, M. Kneiß, M. Lorenz, and M. Grundmann, Proc. Natl. Acad. Sci. 113, 12929 (2016).

    Article  CAS  Google Scholar 

  33. G.A. Sepalage, S. Meyer, A. Pascoe, A.D. Scully, F. Huang, U. Bach, Y. Cheng, and L. Spiccia, Adv. Funct. Mater. 25, 5650 (2015).

    Article  CAS  Google Scholar 

  34. G.A. Casas, M.A. Coppelletti, A.P. Cedola, B.M. Soucase, E.L. Peltzer y Blanca, Superlattices Microstruct. 107, 136 (2017).

    Article  CAS  Google Scholar 

  35. T.H. Chowdhury, M.T. Ferdaous, M.A.A. Wadi, P. Chelvanathan, N. Amin, A. Islam, N. Kamaruddin, M.I.M. Zin, M.H. Ruslan, K.B. Sopian, and M. Akhtaruzzaman, J. Electron. Mater. 47, 3051 (2018).

    CAS  Google Scholar 

  36. J. Christians, R. Fung, and V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, N., Mehra, R. & Devi, C. Efficient Design of Perovskite Solar Cell Using Parametric Grading of Mixed Halide Perovskite and Copper Iodide. J. Electron. Mater. 47, 6935–6942 (2018). https://doi.org/10.1007/s11664-018-6620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6620-z

Keywords

Navigation