Skip to main content

Advertisement

Log in

Flexible Electrospun PVDF Piezoelectric Nanogenerators with Electrospray-Deposited Graphene Electrodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Today, there is a great demand for the development of portable, lightweight, flexible, and stable devices that produce and store energy to provide the power that wearable electronics and smart textile materials need. For this purpose, in recent years, researchers have focused on the development of nanofiber-based nanogenerators that have high surface areas thanks to their nanofibrous structures. Therefore, this study presents the development of piezoelectric nanogenerators made of poly(vinylidene fluoride) (PVDF) nanofibers and graphene-based flexible electrodes via electrospray deposition (ESD) technique using electrospinning devices. First, graphene oxide (GO) was electrosprayed onto the PVDF-nanofiber surface, then, the coated GO layer was reduced by chemical treatment to obtain reduced-GO (rGO) and to increase the electrical conductivity. With the ESD technique, it has been observed that graphene oxide nanosheets successfully wrapped on the nanofibers without agglomerating, and this effect was further enhanced by the reduction process. The effect of different thicknesses of graphene electrodes on the efficiency of nanogenerators was investigated. As a result, a maximum peak-to-peak voltage of 1.00 V was produced by a rGO-sprayed nanofiber-based nanogenerator, while 0.688 V was obtained with pure PVDF nanofibers. Also, "voltage-per-gram" analysis showed that the output voltage was directly related to the electrode morphology and thickness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.A. Khan, A. Mahmud, and D. Ban, Evolution from single to hybrid nanogenerator: a contemporary review on multimode energy harvesting for self-powered electronics. IEEE Trans. Nanotechnol. 18, 21–36 (2019).

    Article  CAS  Google Scholar 

  2. Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020).

    Article  CAS  Google Scholar 

  3. L. Kong, T. Li, H. Hng, F. Boey, T. Zhang, S.L.L.N. Energy, Waste energy harvesting. (2014). Springer at https://doi.org/10.1007/978-3-642-54634-1.>

  4. Ö. Faruk Ünsal, and A. Çelik Bedeloğlu, Recent trends in flexible nanogenerators: a review. Mater. Sci. Res. India 15, 114–130 (2018).

    Article  Google Scholar 

  5. Ü. Bedeloğlu, Ö.F. Ünsal, and A.Ç. Bedeloğlu, İletken polimer esasli nanojeneratörler. Afyon Kocatepe Univ. J. Sci. Eng. 18, 640–647 (2018).

    Google Scholar 

  6. M. El Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, and A. Qaiss, Piezoelectric β-polymorph formation and properties enhancement in graphene oxide - PVDF nanocomposite films. Appl. Surf. Sci. 258, 7668–7677 (2012).

    Article  Google Scholar 

  7. K. Roy, and D. Mandal, CdS decorated rGO containing PVDF electrospun fiber based piezoelectric nanogenerator for mechanical energy harvesting application. AIP Conf. Proc. 1942, 1–5 (2018).

    Google Scholar 

  8. Ö.F. Ünsal, Y. Altın, and A. Çelik Bedeloğlu, Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline. J. Appl. Polym. Sci. 137, 1–14 (2020).

    Article  Google Scholar 

  9. A. Jaworek and A.T. Sobczyk, Electrospraying route to nanotechnology: an overview. J. Electrostat. 66, 197–219 (2008).

    Article  CAS  Google Scholar 

  10. U. Stachewicz, J.F. Dijksman, C.U. Yurteri, and J.C.M. Marijnissen, Volume of liquid deposited per single event electrospraying controlled by nozzle front surface modification. Microfluid. Nanofluid. 9, 635–644 (2010).

    Article  CAS  Google Scholar 

  11. D.G. Papageorgiou, I.A. Kinloch, and R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater Sci. 90, 75–127 (2017).

    Article  CAS  Google Scholar 

  12. I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, and P.L. McEuen, Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. 25, 2558 (2007).

    Article  CAS  Google Scholar 

  13. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, and Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987–1992 (2009).

    Article  CAS  Google Scholar 

  14. A. Bedeloğlu and M. Taş, Graphene and its production methods. Afyon Kocatepe Univ. J. Sci. Eng. 16, 544–554 (2016).

    Google Scholar 

  15. K.S. Novoselov, Nobel lecture: graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    Article  CAS  Google Scholar 

  16. R. Muñoz and C. Gómez-Aleixandre, Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013).

    Article  Google Scholar 

  17. Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.M. Cheng, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009).

    Article  CAS  Google Scholar 

  18. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  19. A.P. Taylor and L.F. Velásquez-García, Electrospray-printed nanostructured graphene oxide gas sensors. Nanotechnology 26, 505301 (2015).

    Article  Google Scholar 

  20. M. Mustafa, M.N. Awais, G. Pooniah, K.H. Choi, J. Ko, and Y.H. Doh, Electrospray deposition of a graphene-oxide thin film, its characterization and investigation of its resistive switching performance. J. Korean Phys. Soc. 61, 470–475 (2012).

    Article  CAS  Google Scholar 

  21. H. Tang, C. Yang, Z. Lin, Q. Yang, F. Kang, and C.P. Wong, Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors. Nanoscale 7, 9133–9139 (2015).

    Article  CAS  Google Scholar 

  22. T. Hu, G. Xin, H. Sun, X. Sun, M. Yu, C. Liu, and J. Lian, Electrospray deposition of a Co3O4 nanoparticles-graphene composite for a binder-free lithium ion battery electrode. RSC Adv. 4, 1521–1525 (2014).

    Article  CAS  Google Scholar 

  23. Y.X. Yin, S. Xin, L.J. Wan, C.J. Li, and Y.G. Guo, Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J. Phys. Chem. C 115, 14148–14154 (2011).

    Article  CAS  Google Scholar 

  24. J. Liu, X. Fu, D.P. Cao, L. Mao, J. Wang, D.H. Mu, B.X. Mi, B.M. Zhao, and Z.Q. Gao, Stacked graphene-TiO2 photoanode via electrospray deposition for highly efficient dye-sensitized solar cells. Org. Electron. 23, 158–163 (2015).

    Article  CAS  Google Scholar 

  25. C.K. Lee, K.W. Park, S.W. Hwang, S.B. Lee, and J.K. Shim, Direct electrospray deposition of graphene onto paper and effect of binder on its surface resistance. J. Nanosci. Nanotechnol. 13, 7108–7111 (2013).

    Article  Google Scholar 

  26. L. Fei, S.H. Yoo, R.A.R. Villamayor, B.P. Williams, S.Y. Gong, S. Park, K. Shin, and Y.L. Joo, Graphene oxide involved air-controlled electrospray for uniform, fast, instantly dry, and binder-free electrode fabrication. ACS Appl. Mater. Interface 9, 9738–9746 (2017).

    Article  CAS  Google Scholar 

  27. W.S. Kim, S.Y. Moon, H.J. Kim, S. Park, J. Koyanagi, and H. Huh, Large-scale graphene-based composite films for flexible transparent electrodes fabricated by electrospray deposition. Mater. Res. Express (2015). https://doi.org/10.1088/2053-1591/1/4/046404.

    Article  Google Scholar 

  28. G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, and J. Lian, Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26, 4521–4526 (2014).

    Article  CAS  Google Scholar 

  29. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Article  CAS  Google Scholar 

  30. H.H. Singh and N. Khare, Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity. Energy 178, 765–771 (2019).

    Article  CAS  Google Scholar 

  31. S. Ippili, V. Jella, A.M. Thomas, C. Yoon, J.S. Jung, and S.G. Yoon, ZnAl-LDH-induced electroactive β-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications. J. Mater. Chem. A 9, 15993–16005 (2021).

    Article  CAS  Google Scholar 

  32. Y. Xue, T. Yang, Y. Zheng, E. Wang, H. Wang, L. Zhu, Z. Du, X. Hou, and K.C. Chou, The mechanism of a PVDF/CsPbBr3 perovskite composite fiber as a self-polarization piezoelectric nanogenerator with ultra-high output voltage. J. Mater. Chem. A (2022). https://doi.org/10.1039/d2ta03559f.

    Article  Google Scholar 

  33. E. Ghafari and N. Lu, Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications. Compos. B Eng. 160, 1–9 (2019).

    Article  CAS  Google Scholar 

  34. R.P. Vijayakumar, D.V. Khakhar, and A. Misra, Studies on α to β phase transformations in mechanically deformed PVDF films. J. Appl. Polym. Sci. 117, 3491–3497 (2010).

    CAS  Google Scholar 

  35. M. Tas, Y. Altin, and A. Bedeloglu, Graphene and graphene oxide-coated polyamide monofilament yarns for fiber-shaped flexible electrodes. J. Text. Inst. 110, 67–73 (2019).

    Article  CAS  Google Scholar 

  36. A. Samadi, S.M. Hosseini, and M. Mohseni, Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Org. Electron. 59, 149–155 (2018).

    Article  CAS  Google Scholar 

  37. I.Y. Abdullah, M. Yahaya, M.H.H. Jumali, and H.M. Shanshool, Effect of annealing process on the phase formation in poly(vinylidene fluoride) thin films. AIP Conf. Proc. 1614, 147–151 (2014).

    Article  Google Scholar 

  38. S.S. Choi, Y.S. Lee, C.W. Joo, S.G. Lee, J.K. Park, and K.S. Han, Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim. Acta 50, 339–343 (2004).

    Article  CAS  Google Scholar 

  39. Y. Liao, R. Wang, M. Tian, C. Qiu, and A.G. Fane, Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 425–426, 30–39 (2013).

    Article  Google Scholar 

  40. J. Bae, I. Baek, and H. Choi, Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 307, 670–678 (2017).

    Article  CAS  Google Scholar 

  41. H. Gu, Y. Huang, L. Zuo, W. Fan, and T. Liu, Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS2: advanced electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 219, 604–613 (2016).

    Article  CAS  Google Scholar 

  42. L. Zhang, W. Fan, and T. Liu, Flexible hierarchical membranes of WS2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage. Nanoscale 8, 16387–16394 (2016).

    Article  CAS  Google Scholar 

  43. M. Bakir, J.L. Meyer, I. Hussainova, A. Sutrisno, J. Economy, and I. Jasiuk, Periodic functionalization of graphene-layered alumina nanofibers with aromatic thermosetting copolyester via epitaxial step-growth polymerization. Macromol. Chem. Phys. 218, 1–6 (2017).

    Article  Google Scholar 

  44. L. Thirugunanam, S. Kaveri, V. Etacheri, S. Ramaprabhu, M. Dutta, and V.G. Pol, Electrospun nanoporous TiO2 nanofibers wrapped with reduced graphene oxide for enhanced and rapid lithium-ion storage. Mater. Charact. 131, 64–71 (2017).

    Article  CAS  Google Scholar 

  45. T. Lavanya, M. Dutta, and K. Satheesh, Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment. Sep. Purif. Technol. 168, 284–293 (2016).

    Article  CAS  Google Scholar 

  46. Y. Woo, G.S. Duesberg, and S. Roth, Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18, 095203 (2007).

    Article  Google Scholar 

  47. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, and Y. Du, Hole-conductor-free, metal-electrode-free TiO2/CH3 NH3 PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 2–7 (2014).

    Article  Google Scholar 

  48. H. Li, H. Guo, K. Huang, B. Liu, C. Zhang, X. Chen, X. Xu, and J. Yang, Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor. Appl. Phys. A Mater. Sci. Process. 124, 1–8 (2018).

    Article  Google Scholar 

  49. U. Yaqoob, A.S.M.I. Uddin, and G.S. Chung, A novel tri-layer flexible piezoelectric nanogenerator based on surface- modified graphene and PVDF-BaTiO3 nanocomposites. Appl. Surf. Sci. 405, 420–426 (2017).

    Article  CAS  Google Scholar 

  50. M. Xu, B. Reichman, and X. Wang, Modeling the effect of electrode thickness on the performance of lithium-ion batteries with experimental validation. Energy 186, 115864 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Turkish Scientific and Technical Research Council, TUBITAK, project no: 219M103. This article is based upon work from COST Action “High-performance Carbon-based composites with Smart properties for Advanced Sensing Applications” (EsSENce Cost Action CA19118, https://www.context-cost.eu) supported by COST (European Cooperation in Science and Technology, https://www.cost.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Çelik Bedeloğlu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 5862 KB)

Supplementary file2 (MP4 15219 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünsal, Ö.F., Altın, Y. & Çelik Bedeloğlu, A. Flexible Electrospun PVDF Piezoelectric Nanogenerators with Electrospray-Deposited Graphene Electrodes. J. Electron. Mater. 52, 2053–2061 (2023). https://doi.org/10.1007/s11664-022-10169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10169-w

Keywords

Navigation