Skip to main content

Advertisement

Log in

Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Li, Z. Chen, B. Yu, S. Tan, Y. Cui, H. Wu, Y. Luo, J. Shi, D. Li, and Q. Meng, Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulation. Joule 6, 676–689 (2022).

    Article  CAS  Google Scholar 

  2. H. Mohseni, M. Dehghanipour, N. Dehghan, F. Tamaddon, M. Ahmadi, M. Sabet, and A. Behjat, Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy 213, 59–66 (2021).

    Article  CAS  Google Scholar 

  3. I. Mora-Seró, How do perovskite solar cells work? Joule 2, 585–587 (2018).

    Article  Google Scholar 

  4. M.K. Mohammed, A.E. Shalan, M. Dehghanipour, and H. Mohseni, Improved mixed-dimensional 3D/2D perovskite layer with formamidinium bromide salt for highly efficient and stable perovskite solar cells. Chem. Eng. J. 428, 131185 (2022).

    Article  CAS  Google Scholar 

  5. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, and M.G. Kim, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  Google Scholar 

  6. G. Nagaraj, M.K. Mohammed, M. Shekargoftar, P. Sasikumar, P. Sakthivel, G. Ravi, M. Dehghanipour, S. Akin, and A.E. Shalan, High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Mater. Today Energy 22, 100853 (2021).

    Article  CAS  Google Scholar 

  7. N. Li, X. Niu, Q. Chen, and H. Zhou, Towards commercialization: The operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020).

    Article  CAS  Google Scholar 

  8. Z. Qiu, N. Li, Z. Huang, Q. Chen, and H. Zhou, Recent advances in improving phase stability of perovskite solar cells. Small Methods 4, 1900877 (2020).

    Article  CAS  Google Scholar 

  9. Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan, Y. Cho, S. Tang, M. Zhang, Y. Yao, and C.F.J. Lau, Acetic acid assisted crystallization strategy for high efficiency and long-term stable perovskite solar cell. Adv. Sci. 7, 1903368 (2020).

    Article  CAS  Google Scholar 

  10. F. Zhang and K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020).

    Article  CAS  Google Scholar 

  11. M.K. Mohammed, M. Dehghanipour, U. Younis, A.E. Shalan, P. Sakthivel, G. Ravi, P.H. Bhoite, and J. Pospisil, Improvement of the interfacial contact between zinc oxide and a mixed cation perovskite using carbon nanotubes for ambient-air-processed perovskite solar cells. New J. Chem. 44, 19802–19811 (2020).

    Article  CAS  Google Scholar 

  12. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  CAS  Google Scholar 

  13. R. Liu and K. Xu, Solvent engineering for perovskite solar cells: a review. Micro Nano Lett. 15, 349–353 (2020).

    Article  CAS  Google Scholar 

  14. J. Li, R. Yang, L. Que, Y. Wang, F. Wang, J. Wu, and S. Li, Optimization of antisolvent engineering toward high performance perovskite solar cells. J. Mater. Res. 34, 2416–2424 (2019).

    Article  CAS  Google Scholar 

  15. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C.S. Moon, N.J. Jeon, and J.-P. Correa-Baena, Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  CAS  Google Scholar 

  16. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, and M. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  CAS  Google Scholar 

  17. S. Paek, P. Schouwink, E.N. Athanasopoulou, K. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M.K. Nazeeruddin, and P. Gao, From nano-to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29, 3490–3498 (2017).

    Article  CAS  Google Scholar 

  18. S. Yoon, M.-W. Ha, and D.-W. Kang, PCBM-blended chlorobenzene hybrid antisolvent engineering for efficient planar perovskite solar cells. J. Mater. Chem. C 5, 10143–10151 (2017).

    Article  CAS  Google Scholar 

  19. Y. Cao, Z. Liu, W. Li, Z. Zhao, Z. Xiao, B. Lei, W. Zi, N. Cheng, J. Liu, and Y. Tu, Efficient and stable MAPbI3 perovskite solar cells achieved via chlorobenzene/perylene mixed antisolvent. Sol. Energy 220, 251–257 (2021).

    Article  Google Scholar 

  20. Y. Wang, J. Wu, P. Zhang, D. Liu, T. Zhang, L. Ji, X. Gu, Z.D. Chen, and S. Li, Stitching triple cation perovskite by a mixed antisolvent process for high performance perovskite solar cells. Nano Energy 39, 616–625 (2017).

    Article  CAS  Google Scholar 

  21. H. Li, Y. Xia, C. Wang, G. Wang, Y. Chen, L. Guo, D. Luo, and S. Wen, High-efficiency and stable perovskite solar cells prepared using chlorobenzene/acetonitrile antisolvent. ACS Appl. Mater. Interfaces. 11, 34989–34996 (2019).

    Article  CAS  Google Scholar 

  22. J. Li, X. Hua, F. Gao, X. Ren, C. Zhang, Y. Han, Y. Li, B. Shi, and S.F. Liu, Green antisolvent additive engineering to improve the performance of perovskite solar cells. J. Energy Chem. 66, 1–8 (2022).

    Article  Google Scholar 

  23. S. Kim, H. Oh, G. Kang, I.K. Han, I. Jeong, and M. Park, High-power and flexible indoor solar cells via controlled growth of perovskite using a greener antisolvent. ACS Appl. Energy Mater. 3, 6995–7003 (2020).

    Article  CAS  Google Scholar 

  24. L. Wang, X. Wang, L.-L. Deng, S. Leng, X. Guo, C.-H. Tan, W.C. Choy, and C.-C. Chen, The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Mater. Horiz. 7, 934–942 (2020).

    Article  CAS  Google Scholar 

  25. M. Yavari, M. Mazloum-Ardakani, S. Gholipour, M.M. Tavakoli, S.H. Turren-Cruz, N. Taghavinia, M. Grätzel, A. Hagfeldt, and M. Saliba, Greener, nonhalogenated solvent systems for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1800177 (2018).

    Article  Google Scholar 

  26. Y. Yun, F. Wang, H. Huang, Y. Fang, S. Liu, W. Huang, Z. Cheng, Y. Liu, Y. Cao, and M. Gao, A nontoxic bifunctional (anti) solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater. 32, 1907123 (2020).

    Article  CAS  Google Scholar 

  27. M. Dehghanipour, A. Behjat, and H.A. Bioki, Fabrication of stable and efficient 2D/3D perovskite solar cells through post-treatment with TBABF4. J. Mater. Chem. C 9, 957–966 (2021).

    Article  CAS  Google Scholar 

  28. N. Dehghan, A. Behjat, H. Zare, H. Mohseni, and M. Dehghanipour, Modification of electron-transport layers with mixed RGO/C60 additive to boost the performance and stability of perovskite solar cells: A comparative study. Opt. Mater. 119, 111313 (2021).

    Article  CAS  Google Scholar 

  29. U. Nwankwo, S. Ngqoloda, A.C. Nkele, C.J. Arendse, K.I. Ozoemena, A. Ekwealor, R. Jose, M. Maaza, and F.I. Ezema, Effects of alkali and transition metal-doped TiO2 hole blocking layers on the perovskite solar cells obtained by a two-step sequential deposition method in air and under vacuum. RSC Adv. 10, 13139–13148 (2020).

    Article  CAS  Google Scholar 

  30. M. Dehghanipour, A. Behjat, A. Shabani, M. Haddad, Toward desirable 2D/3D hybrid perovskite films for solar cell application with additive engineering approach. J. Mater. Sci. Mater. Electron. (2022) 1–12.

  31. S.R. Raga, Y. Jiang, L.K. Ono, and Y. Qi, Application of methylamine gas in fabricating organic–inorganic hybrid perovskite solar cells. Energ. Technol. 5, 1750–1761 (2017).

    Article  CAS  Google Scholar 

  32. C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).

    Article  CAS  Google Scholar 

  33. M. Dehghanipour, M. Khanzadeh, M. Karimipour, and M. Molaei, Dependence of nonlinear optical properties of Ag2S@ ZnS core-shells on Zinc precursor and capping agent. Opt. Laser Technol. 100, 286–293 (2018).

    Article  CAS  Google Scholar 

  34. G.R. Kumar, A.D. Savariraj, S. Karthick, S. Selvam, B. Balamuralitharan, H.-J. Kim, K.K. Viswanathan, M. Vijaykumar, and K. Prabakar, Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys. Chem. Chem. Phys. 18, 7284–7292 (2016).

    Article  Google Scholar 

  35. W. Luo, L.-Z. Yan, R. Liu, T.-Y. Zou, and H. Zhou, Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal–semiconductor–metal photodetectors. Chin. Phys. B 28, 047804 (2019).

    Article  CAS  Google Scholar 

  36. Y. Du, H. Cai, H. Wen, Y. Wu, Z. Li, J. Xu, L. Huang, J. Ni, J. Li, and J. Zhang, Undesirable role of remnant PbI2 layer on low temperature processed planar perovskite solar cells. RSC Adv. 6, 101250–101258 (2016).

    Article  CAS  Google Scholar 

  37. T.P. Gujar, T. Unger, A. Schönleber, M. Fried, F. Panzer, S. Van Smaalen, A. Köhler, and M. Thelakkat, The role of PbI2 in CH3 NH3 PbI3 perovskite stability, solar cell parameters and device degradation. Phys. Chem. Chem. Phys. 20, 605–614 (2018).

    Article  CAS  Google Scholar 

  38. M. Lyu, D.-K. Lee, and N.-G. Park, Effect of alkaline earth metal chloride additives BCl2 (B= Mg, Ca, Sr and Ba) on the photovoltaic performance of FAPbI3 based perovskite solar cells. Nanoscale Horizons 5, 1332–1343 (2020).

    Article  CAS  Google Scholar 

  39. M. Khanzadeh, M. Dehghanipour, A. Darehkordi, and F. Rahmani, Wavelength-dependent nonlinear optical properties of 8-(4-methoxyphenyl)-6-oxo-3-p-tolyl-6H-pyrido [1, 2-b][1, 2, 4] triazine-7, 9-dicarbonitrile. Can. J. Phys. 96, 1288–1294 (2018).

    Article  CAS  Google Scholar 

  40. D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, and S.F. Liu, High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 1–11 (2018).

    Google Scholar 

  41. J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang, X. Jing, and M. Shao, Fluorinated low-dimensional Ruddlesden-Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31, 1901673 (2019).

    Article  Google Scholar 

  42. S.M. Majeed, D.S. Ahmed, and M.K. Mohammed, Antisolvent engineering via potassium bromide additive for highly efficient and stable perovskite solar cells. Org. Electron. 99, 106310 (2021).

    Article  CAS  Google Scholar 

  43. S.H. Kareem, M.H. Elewi, A.M. Naji, D.S. Ahmed, M.K. Mohammed, Efficient and stable pure α-phase FAPbI3 perovskite solar cells with a dual engineering strategy: Additive and dimensional engineering approaches. Chem. Eng. J. (2022) 136469.

  44. O.A. Khaleel, D.S. Ahmed, Interface engineering at electron transport/perovskite layers using wetting mesoporous titanium dioxide to fabricate efficient and stable perovskite solar cells. Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Heidary.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeisi, S., Mohammadi, M., Hoseini, A. et al. Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent. J. Electron. Mater. 52, 1419–1425 (2023). https://doi.org/10.1007/s11664-022-10120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10120-z

Keywords

Navigation