Skip to main content

Advertisement

Log in

Chlorobenzene solvent annealing of perovskite thin films for improving efficiency and reproducibility of perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, metal halide perovskite solar cells have developed rapidly, with certified power conversion efficiency of over 25% for single-junction solar cells. However, these devices still face challenges such as low efficiency and poor reproducibility, where the quality of the absorbing layer is an essential factor affecting the performance of perovskite solar cells. The triple-cation perovskite thin films prepared based on the two-step method have residuals of lead iodide and a large number of grain boundaries and other defects, leading to the charge carrier recombination and thus to degrade the cell photovoltaic performance. Solvent annealing is a method to improve the performance of perovskite solar cells and has been proven to improve the efficiency and reproducibility. Herein, this work introduced chlorobenzene solvent annealing during the preparation of the organic layer of the perovskite thin film. The results show that the treated perovskite film have increased the grain size of the perovskite thin film and meanwhile reduced its defects. At the same time, this treatment significantly reduced the residual lead iodide in the perovskite film, resulting in an improvement in the reproducibility of the devices. Moreover, this treatment also contributed to enhance the specific gravity of radiative recombination and to prolong the carrier lifetime in the film, thus improving the efficiency of the solar cell. As a result, the cell efficiency and reproducibility were improved, where the average and the highest efficiencies were increased by 16.38% and 5.87%, respectively, compared to the perovskite solar cells prepared without the chlorobenzene solvent annealing treatment. Therefore, this work provides a promising idea for improving the quality of perovskite films and further optimizing the efficiency of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Kojima, K. Teshima, Y. Shirai et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  2. H.S. Kim, C.R. Lee, J.H. Im et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012). https://doi.org/10.1038/srep00591

    Article  CAS  Google Scholar 

  3. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  4. N.J. Jeon, J.H. Noh, Y.C. Kim et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014

    Article  CAS  Google Scholar 

  5. Q. Jiang, Y. Zhao, X.W. Zhang et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  6. J.J. Yoo, G. Seo, M.R. Chua et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w

    Article  CAS  Google Scholar 

  7. H. Min, M. Kim, S.U. Lee et al., Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science 366, 749–753 (2019). https://doi.org/10.1126/science.abc4417

    Article  CAS  Google Scholar 

  8. M. Kim, J. Jeong, H.Z. Lu et al., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022). https://doi.org/10.1126/science.abh1885

    Article  CAS  Google Scholar 

  9. C.H. Xiong, J.X. Sun, C. Cai et al., Disclosing exciton binding energy of organic materials from absorption spectrum. Sol. Energy. 204, 155–160 (2020). https://doi.org/10.1016/j.solener.2020.04.070

    Article  CAS  Google Scholar 

  10. M. Becker, T. Klüner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton. Trans. 46, 3500–3509 (2017). https://doi.org/10.1039/C6DT04796C

    Article  CAS  Google Scholar 

  11. G.D. Tainter, M.T. Hörantner, L.M. Pazos-Outón et al., Long-range charge extraction in back-contact perovskite architectures via suppressed recombination. Joule 3, 1301–1313 (2019). https://doi.org/10.1016/j.joule.2019.03.010

    Article  CAS  Google Scholar 

  12. D. Giovanni, M. Righetto, Q.N. Zhang et al., Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping. Light Sci. Appl. 10, 1–9 (2021). https://doi.org/10.1038/s41377-020-00443-z

    Article  CAS  Google Scholar 

  13. K.K. Chauhan, S. Prodhan, D. Ghosh et al., Long carrier diffusion length and slow hot carrier cooling in thin film mixed halide perovskite. IEEE J. Photovolt. 10, 803–810 (2020). https://doi.org/10.1109/JPHOTOV.2020.2976032

    Article  Google Scholar 

  14. H. Lee, A. Rana, I. Kymissis et al., Origin of open-circuit voltage reduction in high-mobility perovskite solar cells. Sol. Energy. 236, 473–479 (2022). https://doi.org/10.1016/j.solener.2022.03.025

    Article  CAS  Google Scholar 

  15. L.W. Rebecca, Z.A. Burhanudin, M. Abdullah et al., Structural changes and band gap tunability with incorporation of n-butylammonium iodide in perovskite thin film. Heliyon 6, 1–4 (2020). https://doi.org/10.1016/j.heliyon.2020.e03364

    Article  Google Scholar 

  16. X. Wu, Y.Z. Liu, F. Qi et al., Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. J. Mater. Chem. A 9, 19778–19787 (2021). https://doi.org/10.1039/d0ta12286f

    Article  CAS  Google Scholar 

  17. M. Saliba, T. Mastui, J.Y. Seo et al., Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j

    Article  CAS  Google Scholar 

  18. Y. Tu, X.Y. Yang, R. Su et al., Diboron-assisted interfacial defect control strategy for highly efficient planar perovskite solar cells. Adv. Mater. 30, 1–8 (2018). https://doi.org/10.1002/adma.201805085

    Article  CAS  Google Scholar 

  19. H. Zhang, Y.Z. Wu, C. Shen et al., Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Adv. Energy Mater. 9, 1–9 (2019). https://doi.org/10.1002/aenm.201803573

    Article  CAS  Google Scholar 

  20. M. Zhang, W.P. Hu, Y.B. Shang et al., Surface passivation of perovskite film by sodium toluenesulfonate for highly efficient solar cells. Sol. RRL 4, 1–10 (2020). https://doi.org/10.1002/solr.202000113

    Article  CAS  Google Scholar 

  21. B. Chen, P.N. Rudd, S. Yang et al., Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). https://doi.org/10.1039/c8cs00853a

    Article  CAS  Google Scholar 

  22. G.J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere et al., Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015). https://doi.org/10.1002/adma.201405372

    Article  CAS  Google Scholar 

  23. Y. Shao, Z. Xiao, C. Bi et al., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms6784

    Article  CAS  Google Scholar 

  24. L. Zeng, S. Chen, K. Forberich et al., Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy Environ. Sci. 13, 4666–4690 (2020). https://doi.org/10.1039/d0ee02575e

    Article  CAS  Google Scholar 

  25. X. Deng, Z.Y. Cao, Y. Yuan et al., Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coord. Chem. Rev. 420, 213408 (2020). https://doi.org/10.1016/j.ccr.2020.213408

    Article  CAS  Google Scholar 

  26. X. Cao, L.L. Zhi, Y. Jia et al., A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 11, 7639–7654 (2019). https://doi.org/10.1021/acsami.8b16315

    Article  CAS  Google Scholar 

  27. Z. Wang, Y.L. Lu, Z.H. Xu et al., An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%. Adv. Sci. 8, 1–10 (2021). https://doi.org/10.1002/advs.202101856

    Article  CAS  Google Scholar 

  28. E. Rezaee, W. Zhang, S.R.P. Silva, Solvent engineering as a vehicle for high quality thin films of perovskites and their device fabrication. Small 17, 1–18 (2021). https://doi.org/10.1002/smll.202008145

    Article  CAS  Google Scholar 

  29. T. Bu, X.P. Liu, Y. Zhou et al., A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10, 2509–2515 (2017). https://doi.org/10.1039/c7ee02634j

    Article  CAS  Google Scholar 

  30. G. Kim, H. Min, K.S. Lee et al., Impact of strain relaxation on performance of a-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020). https://doi.org/10.1126/science.abc4417

    Article  CAS  Google Scholar 

  31. N. Li, X.X. Niu, L. Li et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021). https://doi.org/10.1126/science.abh3884

    Article  CAS  Google Scholar 

  32. S. Tan, T.Y. Huang, I. Yavuz et al., Surface reconstruction of halide perovskites during post-treatment. J. Am. Chem. Soc. 143, 6781–6786 (2021). https://doi.org/10.1021/jacs.1c00757

    Article  CAS  Google Scholar 

  33. Z. Li, B. Li, X. Wu et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 420, 416–420 (2022). https://doi.org/10.1126/science.abm8566

    Article  CAS  Google Scholar 

  34. A.R. Mohd Yusoff, V. Bin, M. Georgiadou, D.G. et al., Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 14, 2906–2953 (2021). https://doi.org/10.1039/d1ee00062d

    Article  CAS  Google Scholar 

  35. Z. Xiao, Q.F. Dong, C. Bi et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014). https://doi.org/10.1002/adma.201401685

    Article  CAS  Google Scholar 

  36. H. Zhang, X.G. Ren, X.W. Chen et al., Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment. Energy Environ. Sci. 11, 2253–2262 (2018). https://doi.org/10.1039/c8ee00580j

    Article  CAS  Google Scholar 

  37. J. Lei, H. Wang, F. Gao et al., Improving the quality of CH3NH3PbI3 films via chlorobenzene vapor annealing. Phys. Status Solidi Appl. Mater. Sci. 215, 1–7 (2018). https://doi.org/10.1002/pssa.201700959

    Article  CAS  Google Scholar 

  38. Y. Wang, D.T. Liu, P. Zhang et al., Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing. Sci. China Mater. 61, 1536–1548 (2018). https://doi.org/10.1007/s40843-018-9263-7

    Article  CAS  Google Scholar 

  39. C.C. Chen, S.H. Chang, L.C. Chen et al., Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells. Sol. Energy Mater. Sol. Cells 159, 583–589 (2017). https://doi.org/10.1016/j.solmat.2016.10.011

    Article  CAS  Google Scholar 

  40. B. Bahrami, S. Mabrouk, N. Adhikari et al., Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density for higher efficiency perovskite solar cells. InfoMat 2, 409–423 (2020). https://doi.org/10.1002/inf2.12055

    Article  CAS  Google Scholar 

  41. R. Long, J. Liu, O.V. Prezhdo, Unravelling the effects of grain boundary and chemical doping on electron-hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J. Am. Chem. Soc. 138, 3884–3890 (2016). https://doi.org/10.1021/jacs.6b00645

    Article  CAS  Google Scholar 

  42. H. Wang, Z.W. Wang, Z. Yang et al., Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 32, 1–8 (2020). https://doi.org/10.1002/adma.202000865

    Article  CAS  Google Scholar 

  43. H.Y. Wang, M.Y. Hao, J. Han et al., Adverse effects of excess residual PbI2 on photovoltaic performance, charge separation, and trap-state properties in mesoporous structured perovskite solar cells. Chem. Eur. J. 23, 3986–3992 (2017). https://doi.org/10.1002/chem.201605668

    Article  CAS  Google Scholar 

  44. H.B. Richard, Trap density determination by space-charge-limited currents. J. Appl. Phys. 33, 1733–1739 (1962). https://doi.org/10.1063/1.1728818

    Article  Google Scholar 

  45. D. Yao, X. Mao, X.X. Wang et al., Dimensionality-controlled surface passivation for enhancing performance and stability of perovskite solar cells via triethylenetetramine vapor. ACS Appl. Mater. Interfaces 12, 6651–6661 (2020). https://doi.org/10.1021/acsami.9b19908

    Article  CAS  Google Scholar 

  46. B.B. Yuan, S.L. Zhao, Z. Xu et al., Improving the photovoltaic performance of planar heterojunction perovskite solar cells by mixed solvent vapor treatment. RSC Adv. 8, 11574–11579 (2018). https://doi.org/10.1039/c7ra13289a

    Article  CAS  Google Scholar 

  47. Y. Jiang, E.J. Juarez-Perez, Q.Q. Ge et al., Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells. Mater. Horiz. 3, 548–555 (2016). https://doi.org/10.1039/c6mh00160b

    Article  CAS  Google Scholar 

  48. X.M. Zhao, T.R. Liu, A.B. Kaplan et al., Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells. Nano. Lett. 20, 8880–8889 (2020). https://doi.org/10.1021/acs.nanolett.0c03914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Yingming Zhu from the Institute of New Energy and Low-Carbon Technology, Sichuan University, for SEM images capturing and analysis. This work is financially supported by National Key Research and Development Program of China (Grant No. 2019YFE0120000), Science and Technology Program of Sichuan Province (Nos. 2020YFH0079 and 2021YFG0102), Fundamental Research Funds for the Central Universities (No. YJ201955) and the Engineering Featured Team Fund of Sichuan University (No. 2020SCUNG102).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YY and AH performed material preparation, data collection and analysis. YY wrote the first draft of the manuscript. JZ directed the project. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingquan Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., He, A., Hao, X. et al. Chlorobenzene solvent annealing of perovskite thin films for improving efficiency and reproducibility of perovskite solar cells. J Mater Sci: Mater Electron 33, 24208–24219 (2022). https://doi.org/10.1007/s10854-022-09122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09122-8

Navigation