Skip to main content
Log in

Spintronic Thermoelectric Properties of Amorphous Fe-Ti-Sb Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Amorphous Fe-Ti-Sb (FTS) thin film was prepared on a 0.3-µm SiO2/Si wafer by a DC magnetron sputtering method to investigate the spintronic thermoelectric (STE) properties based on the anomalous Nernst effect (ANE) and spin Seebeck effect (SSE). A platinum (Pt) ultra-thin layer was coated on top FTS (Pt/FTS) thin film surface to be used for the spin Hall detector. The crystal structure, morphology, composition and magnetic characteristics of as-deposited FTS and Pt/FTS thin films were carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and vibrating sample magnetometry (VSM), respectively. As a result, the crystal structure and morphology displayed a metallic-glass type within the amorphous phase and a smooth surface. The magnetic characterization showed that an ANE and SSE of FTS thin film to yield a spin Seebeck coefficient (Ss) of around 0.35 µV K− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.M. Dehkordi, M. Zebarjadi, J. He, and T.M. Tritt, Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R 97, 1–22 (2015).

    Article  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009).

    Article  CAS  Google Scholar 

  3. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  4. X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M.G. Kanatzidis, and A. Yamamoto, Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci. 9, 517–529 (2016).

    Article  CAS  Google Scholar 

  5. Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, and L. Chen, Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10, 956–963 (2017).

    Article  CAS  Google Scholar 

  6. X.L. Shi, J. Zou, and Z.G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).

    Article  CAS  Google Scholar 

  7. N. Prainetr, A. Vora-ud, M. Horprathum, P. Muthitamongkol, S. Thaowonkaew, T. Santhaveesuk, T.B. Phan, and T. Seetawan, Transfer of p-type to n-type thermoelectric properties of Ag-Sb-Te thin film through temperature annealing and its electrical power generation. J. Elect. Mater. 49, 572–576 (2020).

    Article  CAS  Google Scholar 

  8. S. Thaowonkaew, M. Kumar, and A. Vora-ud, Thermoelectric properties of Ag-doped Sb2Te3 thin films on SiO2 and polyimide substrates with rapid thermal annealing. J. Elect. Mater. 50, 2669–2673 (2021).

    Article  CAS  Google Scholar 

  9. Y. Zou, Z.G. Chen, Y. Huang, L. Yang, J. Drennan, and J. Zou, Anisotropic electrical properties from vapor–solid–solid grown Bi2Se3 nanoribbons and nanowires. J. Phys. Chem. C 118, 20620–20626 (2014).

    Article  CAS  Google Scholar 

  10. G.E.W. Bauer, E. Saitoh, and B.J. van Wees, Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  CAS  Google Scholar 

  11. S.R. Boona, R.C. Myers, and J.P. Heremans, Spin caloritronics. Energy Environ. Sci. 7, 885–910 (2014).

    Article  Google Scholar 

  12. C.H. Back, G.E.W. Bauer, and B.L. Zink, Special issue on spin caloritronics. J. Phys. D Appl. Phys. 52, 230301 (2019).

    Article  CAS  Google Scholar 

  13. S.J. Mason, A. Hojem, D.J. Wesenberg, A.D. Avery, and B.L. Zink, Determining absolute Seebeck coefficients from relative thermopower measurements of thin films and nanostructures. J. Appl. Phys. 127, 085101 (2020).

    Article  CAS  Google Scholar 

  14. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect. Nature 455, 778 (2008).

    Article  CAS  Google Scholar 

  15. K. Uchida, H. Adachi, T. Kikkawa, A. Kirihara, M. Ishida, S. Yorozu, S. Maekawa, and E. Saitoh, Thermoelectric generation based on spin Seebeck effects. Proc. IEEE 104, 1946–1973 (2016).

    Article  CAS  Google Scholar 

  16. P. Wongjom, and S. Pinitsoontorn, Investigation of the spin Seebeck effect and anomalous Nernst effect in a bulk carbon material. Results Phys. 8, 1245–1249 (2018).

    Article  Google Scholar 

  17. T. Kikkawa, K. Uchida, S. Daimon, Y. Shiomi, H. Adachi, Z. Qiu, D. Hou, X.-F. Jin, S. Maekawa, and E. Saitoh, Separation of longitudinal spin Seebeck effect from anomalous Nernst effect: determination of origin of transverse thermoelectric voltage in metal/insulator junctions. Phys. Rev. B 88, 214403 (2013).

    Article  Google Scholar 

  18. K. Tolborg and B.B. Iversen, Chemical bonding origin of the thermoelectric power factor in half-Heusler semiconductors. Chem. Mater. 33, 5308–5316 (2021).

    Article  CAS  Google Scholar 

  19. S. Jiang and K. Yang, Review of high-throughput computational design of Heusler alloys. J. Alloys Compd. 867, 158854 (2021).

    Article  CAS  Google Scholar 

  20. J. Kübler, A. William, and C. Sommers, Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28, 1745 (1983).

    Article  Google Scholar 

  21. T. Graf and C. Felser, in Spintronics: From Materials to Devices, ed by C. Felser and G.H. Fecher (Springer, Dordrecht, 2013)

  22. C. Felser, G.H. Fecher, and B. Balke, Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668–699 (2007).

    Article  CAS  Google Scholar 

  23. B. Balke, S. Wurmehl, G.H. Fecher, C. Felser, and J. Kübler, Rational design of new materials for spintronics: Co2FeZ(Z=Al, Ga, Si, Ge). Sci. Technol. Adv. Mater. 9, 014102 (2008). https://doi.org/10.1088/1468-6996/9/1/014102.

    Article  CAS  Google Scholar 

  24. D. Serrate, J.M. De Teresa, and M.R. Ibarra, Double perovskites with ferromagnetism above room temperature. J. Phys. Condens. Matter 19, 023201 (2007). https://doi.org/10.1088/0953-8984/19/2/023201.

    Article  CAS  Google Scholar 

  25. H. Kandpal, V. Ksenofontov, M. Wojcik, R. Seshadri, and C. Felser, Electronic structure, magnetism and disorder in the Heusler compound Co2TiSn. J. Phys. D Appl. Phys. 40, 1587 (2007).

    Article  CAS  Google Scholar 

  26. R. Ohshima, A. Sakai, Y. Ando, T. Shinjo, K. Kawahara, H. Ago, and M. Shiraishi, Observation of spin-charge conversion in CVD-grown single-layer graphene. Appl. Phys. Let. 105, 162410 (2014).

    Article  Google Scholar 

  27. M. Kim, S.J. Park, and H. Jin, Enhancing the spin Seebeck effect by controlling interface condition in Pt/polycrystalline nickel ferrite slabs. J. Appl. Phys. 127, 085105 (2020).

    Article  CAS  Google Scholar 

  28. A. Miura, T. Kikkawa, R. Iguchi, K.I. Uchida, E. Saitoh, and J. Shiomi, Probing length-scale separation of thermal and spin currents by nanostructuring YIG. Phys. Rev. Mater. 1, 014601 (2017).

    Article  Google Scholar 

  29. K.I. Uchida, T. Nonaka, T. Ota, and E. Saitoh, Longitudinal spin-Seebeck effect in sintered polycrystalline (Mn, Zn)F2O4. Appl. Phys. Lett. 97, 262504 (2010).

    Article  Google Scholar 

  30. J.D. Arboleda, O. Arnache, M.H. Aguirre, R. Ramos, A. Anadon, and M.R. Ibarra, Evidence of the spin Seebeck effect in Ni-Zn ferrites polycrystalline slabs. Solid State Commun. 270, 140–146 (2018).

    Article  CAS  Google Scholar 

  31. J.D. Arboleda, O. Arnache Olmos, M.H. Aguirre, R. Ramos, A. Anadon, and M.R. Ibarra, Spin Seebeck effect in a weak ferromagnet. Appl. Phys. Lett. 108, 232401 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Japan Science and Technology Agency (JST) as part of SICORP (Grant Number: JPMJSC21E3), the Council of Thailand (NRCT) through the Program Management Unit for Human Resources & Institutional Development Research and Innovation (PMU-B) (B16F650001) and the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation through a Research Grant for New Scholars (Grant No. RGNS 65-174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athorn Vora-ud.

Ethics declarations

Conflict of interest

The corresponding author, on behalf of all authors, declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vora-ud, A., Wongjom, P., Thaowonkaew, S. et al. Spintronic Thermoelectric Properties of Amorphous Fe-Ti-Sb Thin Films. J. Electron. Mater. 52, 989–993 (2023). https://doi.org/10.1007/s11664-022-10107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10107-w

Keywords

Navigation