Skip to main content
Log in

Optimization of GLAD Angle for E-Beam-Fabricated Tungsten Oxide (WO3) Thin Films Towards Novel Electrochromic Behavior

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

It is hypothesized that increasing the glancing angle deposition (GLAD) will increase the porosity of WO3 thin film, thus allowing for better ion diffusion. However, beyond a certain GLAD angle, the film follows a reverse trend and grows quite dense, which is attributable to the highly inclined columnar structure. Consequently, finding an optimal GLAD angle that can produce a perfect porous WO3 film under the given experimental conditions is critical. In this context, WO3 thin films, each 400 nm thick, are fabricated using e-beam evaporation at GLAD angle α = 0° (planar), 30°, 55°, 65°, 70° and 80° on fluorine-doped tin oxide (FTO)-coated substrates and Corning glass substrates. The crystalline structure, surface morphology, optical, electrochemical and electrochromic characteristics of the WO3 thin films are all investigated in detail. Film fabricated at a GLAD angle of 65° showed optimal optical transmittance of 75%, band gap of 3.25 eV, highest coloration efficiency (CE) of 31.06 cm2/C and highest diffusion coefficient (D) of 7.215 × 10–4 cm2/s. In conclusion, it may be inferred that the optimal GLAD angle under the current experimental conditions is 65°, which could give an ideally porous WO3 film with novel electrochromic behavior.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.R. Rosseinsky and R.J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783 (2001).

    Article  CAS  Google Scholar 

  2. M. Buyan, P.A. Brühwiler, A. Azens, G. Gustavsson, R. Karmhag, and C.G. Granqvist, Facial warming and tinted helmet visors. Int. J. Ind. Ergon. 36, 11 (2006).

    Article  Google Scholar 

  3. H. Demiryont and D. Moorehead, Electrochromic emissivity modulator for spacecraft thermal management. Sol. Energy Mater. Sol. Cells 93, 2075 (2009).

    Article  CAS  Google Scholar 

  4. L. Pan, Q. Han, Z. Dong, M. Wan, H. Zhu, Y. Li, and Y. Mai, Reactively sputtered WO3 thin films for the application in all thin film electrochromic devices. Electrochim. Acta 328, 135107 (2019).

    Article  CAS  Google Scholar 

  5. M. Penza, G. Cassano, and F. Tortorella, Gas recognition by activated WO3 thin-film sensors array. Sens. Actuators B Chem. 81, 115 (2001).

    Article  CAS  Google Scholar 

  6. P.V. Karthik Yadav, B. Ajitha, Y.A.K. Reddy, V.R. Minnam Reddy, M. Reddeppa, and M.D. Kim, Effect of sputter pressure on UV photodetector performance of WO3 thin films. Appl. Surf. Sci. 536, 147947 (2021).

    Article  CAS  Google Scholar 

  7. H. Zheng, Y. Tachibana, and K. Kalantar-Zadeh, Dye-sensitized solar cells based on WO3. Langmuir 26, 19148 (2010).

    Article  CAS  Google Scholar 

  8. V. Hariharan, B. Gnanavel, R. Sathiyapriya, and V. Aroulmoji, A review on tungsten oxide (WO3) and their derivatives for sensor applications. Int. J. Adv. Sci. Eng. 5, 1163 (2019).

    Article  CAS  Google Scholar 

  9. Y. Yang, D. Kim, and P. Schmuki, Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers. Electrochem. Commun. 13, 1198 (2011).

    Article  CAS  Google Scholar 

  10. P. Ashrit, Transition metal oxide thin film based chromogenics and devices, 1st ed., (Amsterdam: Elsvier Ltd., 2017).

    Google Scholar 

  11. Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, Highly stable and flexible ITO-free electrochromic films with Bi-functional stacked MoO3/Ag/MoO3 structures. Electrochim. Acta 189, 184 (2016).

    Article  CAS  Google Scholar 

  12. J. Gutpa, H. Shaik, K.N. Kumar, and S. Abdul, PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: a review. Mater. Sci. Semicond. Process. 143, 106534 (2022).

    Article  CAS  Google Scholar 

  13. T. Motohiro and Y. Taga, Thin film retardation plate by oblique deposition. Appl. Opt. 28, 2466 (1989).

    Article  CAS  Google Scholar 

  14. M.Z. Ahmad, A. Wisitsoraat, A.S. Zoolfakar, R.A. Kadir, and W. Wlodarski, Investigation of RF sputtered tungsten trioxide nanorod thin film gas sensors prepared with a glancing angle deposition method toward reductive and oxidative analytes. Sens. Actuators B Chem. 183, 364 (2013).

    Article  CAS  Google Scholar 

  15. M.M. Hawkeye and M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro—and nanostructured thin films. J. Vac. Sci. Technol. A Vac. Surf. Films 25, 1317 (2007).

    Article  CAS  Google Scholar 

  16. M.T. Taschuk, M.M. Hawkeye, and M.J. Brett, Glancing angle deposition, 3rd ed., (Amsterdam: Elsevier Ltd., 2010).

    Google Scholar 

  17. M.M. Hawkeye, M.T. Taschuk, and M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale, 1st ed., (New York: Wiley, 2014).

    Google Scholar 

  18. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  19. J. Gupta, H. Shaik, and K.N. Kumar, A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics 27, 2307 (2021).

    Article  CAS  Google Scholar 

  20. K. Robbie and M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A Vac. Surf. Films 15, 1460 (1997).

    Article  CAS  Google Scholar 

  21. C. Charles, N. Martin, and M. Devel, Optical properties of nanostructured WO3 thin films by glancing angle deposition: comparison between experiment and simulation. Surf. Coat. Technol. 276, 136 (2015).

    Article  CAS  Google Scholar 

  22. G. Beydaghyan, G. Bader, and P.V. Ashrit, Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films. Thin Solid Films 516, 1646 (2008).

    Article  CAS  Google Scholar 

  23. J. Ollitrault, N. Martin, J.Y. Rauch, J.B. Sanchez, and F. Berger, Improvement of ozone detection with GLAD WO3 films. Mater. Lett. 155, 1 (2015).

    Article  CAS  Google Scholar 

  24. Y. Pihosh et al., Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10, 3692 (2014).

    Article  CAS  Google Scholar 

  25. M. Horprathum, P. Eiamchai, J. Kaewkhao, C. Chananonnawathorn, V. Patthanasettakul, S. Limwichean, N. Nuntawong, and P. Chindaudom, in AIP Conference Proceedings (2014), p. 7

  26. S. Li, Z. Yao, J. Zhou, R. Zhang, and H. Shen, Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation. Mater. Lett. 195, 213 (2017).

    Article  CAS  Google Scholar 

  27. D. Evecan and E. Zayim, Highly uniform electrochromic tungsten oxide thin films deposited by e-beam evaporation for energy saving systems. Curr. Appl. Phys. 19, 198 (2019).

    Article  Google Scholar 

  28. S.I. Boyadjiev, V. Georgieva, N. Stefan, G.E. Stan, N. Mihailescu, A. Visan, I.N. Mihailescu, C. Besleaga, and I.M. Szilágyi, Characterization of PLD grown WO3 thin films for gas sensing. Appl. Surf. Sci. 417, 218 (2017).

    Article  CAS  Google Scholar 

  29. K. Kazuhiro and S. Shigeo, Physical properties of tungsten oxide films deposited by a reactive sputtering method. Jpn. J. Appl. Phys. 30, 1841 (1991).

    Article  Google Scholar 

  30. J.C. Sit, D. Vick, K. Robbie, and M.J. Brett, Thin film microstructure control using glancing angle deposition by sputtering. J. Mater. Res. 14, 1197 (1999).

    Article  CAS  Google Scholar 

  31. J. Lintymer, N. Martin, J.M. Chappé, P. Delobelle, and J. Takadoum, Nanoindentation of chromium zigzag thin films sputter deposited. Surf. Coat. Technol. 200, 269 (2005).

    Article  CAS  Google Scholar 

  32. N. Maiti, P. Karmakar, U. D. Barve, and A. V. Bapat, in Journal of Physics: Conference Series (2008), p. 012049.

  33. D. Işik, M. Ak, and C. Durucan, Structural, electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols. Thin Solid Films 518, 104 (2009).

    Article  Google Scholar 

  34. D.X. Ye, Y.P. Zhao, G.R. Yang, Y.G. Zhao, G.C. Wang, and T.M. Lu, Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition. Nanotechnology 13, 615 (2002).

    Article  Google Scholar 

  35. R.N. Tait, T. Smy, and M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196 (1993).

    Article  CAS  Google Scholar 

  36. A. Zarzycki, K. Dyndał, M. Sitarz, J. Xu, F. Gao, K. Marszałek, and A. Rydosz, Influence of GLAD sputtering configuration on the crystal structure, morphology, and gas-sensing properties of the WO3 films. Coatings 10, 1 (2020).

    Article  Google Scholar 

  37. K.J. Patel, C.J. Panchal, V.A. Kheraj, and M.S. Desai, Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films. Mater. Chem. Phys. 114, 475 (2009).

    Article  CAS  Google Scholar 

  38. V. Madhavi, P. Kondaiah, O.M. Hussain, and S. Uthanna, Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films. Physica B 454, 141 (2014).

    Article  CAS  Google Scholar 

  39. R.S. Vemuri, M.H. Engelhard, and C.V. Ramana, Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces. 4, 1371 (2012).

    Article  CAS  Google Scholar 

  40. P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, and A. Ferreira Da Silva, Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 96, 10 (2010).

    Article  Google Scholar 

  41. M. Aez et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331 (2012).

    Article  Google Scholar 

  42. J. Yuan, B. Wang, H. Wang, Y. Chai, Y. Jin, H. Qi, and J. Shao, Electrochromic behavior of WO3 thin films prepared by GLAD. Appl. Surf. Sci. 447, 471 (2018).

    Article  CAS  Google Scholar 

  43. V. R. Buch, A. K. Chawla, and S. K. Rawal, in Materials Today: Proceedings (2016), p. 1429.

  44. B.S. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon, Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 80401, 763 (2006).

    Article  Google Scholar 

  45. K. Naveen Kumar, H. Shaik, Sathish, V. Madhavi, and S. Abdul Sattar, in IOP Conference Series: Materials Science and Engineering (2020), p. 012147.

  46. A. Dolatshahi-Pirouz, M.B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition. Phys. Rev. B Condens. Matter. Mater. Phys. 77, 1 (2008).

    Article  Google Scholar 

  47. J.N. Sun, Y.F. Hu, W.E. Frieze, and D.W. Gidley, Characterizing porosity in nanoporous thin films using positronium annihilation lifetime spectroscopy. Radiat. Phys. Chem. 68, 345 (2003).

    Article  CAS  Google Scholar 

  48. A. Barranco, A. Borras, A.R. Gonzalez-Elipe, and A. Palmero, Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog. Mater Sci. 76, 59 (2016).

    Article  CAS  Google Scholar 

  49. A. H. Jayatissa and S. Te Cheng, in Proceedings of the IEEE Conference on Nanotechnology (2002), p. 25.

Download references

Acknowledgments

Our sincere thanks to All India Council for Technical Education (AICTE), New Delhi, India, for providing research funding. Ref: 8-39/RIFD/RPS/POLICY-1/2016-2017.

Funding

Financial support by AICTE is acknowledged. This study was funded by All India Council for Technical Education (AICTE), New Delhi, for providing research funding. Ref: 8-39/RIFD/RPS/POLICY-1/2016-2017.

Author information

Authors and Affiliations

Authors

Contributions

We confirm that the manuscript has been read and approved by all named authors. We also confirm that the order of authors listed in the manuscript has been approved by all named authors. Jyothi Gupta: Investigation, Methodology, Validation. Habibuddin Shaik: Conceptualization, Methodology, Supervision, Funding acquisition, Project administration. K Naveen Kumar: Investigation, Methodology, Validation. Sheik Abdul Sattar: Investigation, Methodology, Validation

Corresponding author

Correspondence to Jyothi Gutpa.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutpa, J., Shaik, H., Naveen Kumar, K. et al. Optimization of GLAD Angle for E-Beam-Fabricated Tungsten Oxide (WO3) Thin Films Towards Novel Electrochromic Behavior. J. Electron. Mater. 52, 653–668 (2023). https://doi.org/10.1007/s11664-022-10036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10036-8

Keywords

Navigation