Skip to main content
Log in

Characterization of 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 Lead-Free Piezoceramic Fabricated via Conventional and Microwave Sintering

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fabrication of 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 (abbreviated as BNST26) ceramics via both conventional furnace sintering (CFS) and microwave sintering (MWS) was investigated in this work. MWS at 1100°C for 5 min resulted in ceramic with density comparable to that of ceramic fabricated via CFS at 1175°C for 2 h. Average grain sizes of 3.2 μm and 2.4 μm were calculated for the ceramics prepared by CFS and MWS, respectively, which was attributed to the lower temperature and shorter sintering time for MWS compared with CFS. In order to investigate the effect of sintering method on the electrical properties of the prepared ceramics, the polarization hysteresis, bipolar and unipolar strain curves, and temperature dependence of permittivity were explored. The results revealed that the remanent polarization (Pr) and coercive field (Ec) of the ceramic prepared by MWS at 1100°C for 5 min were comparable to those of the ceramic under CFS at 1175°C for 2 h. However, the maximum polarization (Pmax) of the CFS ceramic was higher than that of the MWS ceramic. In the case of electric field-induced strain, there was no considerable difference between the MWS and CFS ceramics, and normalized strain d33* = 501 pm/V was obtained for the MWS ceramic at 1100°C, indicating the effectiveness of MWS for fabrication of BNT-based piezoceramics at lower temperature and shorter time versus CFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, M.R. Bafandeh, upon reasonable request.

References

  1. T. Yamamoto, Ferroelectric Properties of the PbZrO3-PbTiO3 System. Jpn. J. Appl. Phys. 35, 5104 (1996).

    Article  CAS  Google Scholar 

  2. B. Malic, M. Otonicar, K. Radan, J. Koruza, Lead-Free Piezoelectric Ceramics. Encyclopedia of Materials Technical Ceramics and Glasses (2021) 358

  3. T. Takenaka, H. Nagata, and Y. Hiruma, Current Developments and Prospective of Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. 47, 3787 (2008).

    Article  CAS  Google Scholar 

  4. J. Rodel, W. Jo, K.T.P. Seifert, E. Anton, and T. Granzow, Perspective on the Development of Lead-Free Piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  Google Scholar 

  5. E. Aksel and J.L. Jones, Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators. Sensors 10, 1935 (2010).

    Article  CAS  Google Scholar 

  6. P.K. Panda and B. Sahoo, PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics 474, 128 (2015).

    Article  CAS  Google Scholar 

  7. H. Nagata, T. Takenaka, Advanced Piezoelectric Materials, Chap. 4, Bi-Based Lead-Free Piezoelectric Ceramics, Tokyo University of Science, Chiba, Japan, 2017

  8. H. Nagata, T. Shinya, Y. Hiruma, T. Takenaka, I. Sakaguchi, and H. Haneda, Piezoelectric Properties of Bismuth Sodium Titanate Ceramics. Ceram. Trans. 167, 213 (2005).

    CAS  Google Scholar 

  9. K. Sakata and Y. Masuda, Ferroelectric and Antiferroelectric Properties of (Bi1/2Na1/2)TiO3-SrTiO3 Solid Solution Ceramics. Ferroelectrics 7, 347 (1974).

    Article  CAS  Google Scholar 

  10. T. Takenaka and K. Sakata, Dielectric, Piezoelectric and Pyroelectric Properties of (BiNa)1/2TiO3-Based Ceramics. Ferroelectrics 95, 153 (1989).

    Article  CAS  Google Scholar 

  11. T. Takenaka, K. Maruyama, and K. Sakata, (Bi, Na)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991).

    Article  CAS  Google Scholar 

  12. H. Yilmaz, G.G. Messing, and S.T. Mckinstry, (Reactive) Templated Grain Growth of Textured Sodium Bismuth Titanate (Na1/2Bi1/2TiO3-BaTiO3) Ceramics-II Dielectric and Piezoelectric Properties. J. Electroceram. 11, 217 (2003).

    Article  CAS  Google Scholar 

  13. A. Herabut and A. Safari, Processing and Electrochemical Properties of (Bi0.5Na0.5)(1–1.5x)LaxTiO3 Ceramics. J. Am. Ceram. Soc. 80, 2954 (1997).

    Article  CAS  Google Scholar 

  14. J.Y. Yi, J.K. Lee, and K.S. Hong, Dependence of the Microstructure and the Electrical Properties of Lanthanum-Substituted (Bi1/2Na1/2)TiO3 on Cation Vacancies. J. Am. Ceram. Soc. 85, 3004 (2003).

    Article  Google Scholar 

  15. Y. Watanabe, Y. Hiruma, H. Nagata, and T. Takenaka, Phase Transition Temperatures and Electrical Properties of Divalent Ions (Ca2+, Sr2+ and Ba2+) Substituted (Bi1/2Na1/2) TiO3 Ceramics. Ceram. Int. 34, 761 (2008).

    Article  CAS  Google Scholar 

  16. H. Nagata, Electrical Properties and Tracer Diffusion of Oxygen in some Bi-Based Lead-Free Piezoelectric Ceramics. J. Ceram. Soc. Jpn. 116, 271 (2008).

    Article  CAS  Google Scholar 

  17. A. Watcharapasorn, S. Jiansirisomboon, and T. Tunkasiri, Sintering of Fe-Doped Bi0.5Na0.5TiO3 at <1000°C. Matter. Lett. 61, 2986 (2007).

    Article  CAS  Google Scholar 

  18. Y. Zhang, R. Chu, Z. Xu, J. Hao, G. Li, and Q. Yin, Dielectric and Piezoelectric Properties of low Temperature Sintering Lead Free (Bi0.5Na0.7+xK0.2Li0.1)0.5TiO3 Piezoelectric Ceramics. Physica B Condens. Matter. 405, 1228 (2010).

    Article  CAS  Google Scholar 

  19. X. Wu, T.H. Chung, H. Sun, and K.W. Kwok, Tunable Photoluminescence Properties of Pr3+/Er3+-Doped 0.93Bi05Na0.5TiO3–0.07BaTiO3 Low-Temperature Sintered Multifunctional Ceramics. Ceram. Int. 42, 9899 (2016).

    Article  CAS  Google Scholar 

  20. T.H. Chung and K.W. Kwok, Low-Temperature-Sintered Pr-Doped 0.93(Bi05Na0.5)TiO3–0.07BaTiO3multifunctional Ceramics with Li2CO3 Sintering Aid. J. Alloys Compd. 737, 317 (2018).

    Article  CAS  Google Scholar 

  21. Y.H. Hong, H.S. Han, G.H. Jeong, Y.S. Park, T.H. Dinh, C.W. Ahn, and J.S. Lee, High Electromechanical Strain Properties by the Existence of Nonergodicity in LiNbO3-Modified Bi1/2Na1/2TiO3-SrTiO3relaxor Ceramics. Ceram. Int. 44, 21138 (2018).

    Article  CAS  Google Scholar 

  22. W. Jo, J.B. Ollagnier, J.L. Park, E.M. Anton, O.J. Kwon, C. Park, H.H. Seo, J.S. Lee, E. Erdem, R.A. Eichel, and J. Rodel, CuO as a Sintering Additive for (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 Lead-Free Piezoceramics. J. Eur. Ceram. Soc. 31, 2107 (2011).

    Article  CAS  Google Scholar 

  23. N.B. Do, H.D. Jang, I. Hong, H.S. Han, D.T. Le, W.P. Tai, and J.S. Lee, Low Temperature Sintering of Lead-Free Bi0.5(Na0.82K0.18)0.5TiO3 Piezoelectric Ceramics by co-Doping with CuO and Nb2O5. Ceram. Int. 38, S359 (2012).

    Article  CAS  Google Scholar 

  24. C.H. Lee, H.S. Han, T.A. Duong, T.H. Dinh, C.W. Ahn, and J.S. Lee, Stabilization of the Relaxor Phase by Adding CuO in Lead-Free (Bi1/2Na1/2)TiO3-SrTiO3-BiFeO3 Ceramics. Ceram. Int. 43, 11071 (2017).

    Article  CAS  Google Scholar 

  25. P. Fan, Y. Zhang, S.T. Zhang, B. Xie, Y. Zhu, M.A. Marwat, W. Ma, K. Liu, L. Shu, and H. Zhang, Low-Temperature Sintered (Na1/2Bi1/2)TiO3-Based Incipient Piezoceramics for co-Fired Multilayer Actuator Application. J. Materiom. 5, 480 (2019).

    Article  Google Scholar 

  26. F. Zhang, X. Qiao, Q. Shi, X. Chao, Z. Yang, and D. Wu, High Energy Storage Density Realized in Bi0.5Na0.5TiO3-Based Relaxor Ferroelectric Ceramics at Ultralow Sintering Temperature. J. Eur. Ceram. Soc. 41, 368 (2021).

    Article  Google Scholar 

  27. M.R. Bafandeh, R. Gharahkhani, and J.S. Lee, Sintering Behavior, Dielectric and Piezoelectric Properties of Sodium Potassium Niobate-Based Ceramics Prepared by Single Step and Two-Step Sintering. Ceram. Int. 41, 163 (2015).

    Article  CAS  Google Scholar 

  28. Z.Y. Shen, W.Q. Luo, Y. Tang, S. Zhang, and Y. Li, Microstructure and Electrical Properties of Nb and Mn co-Doped CaBi4Ti4O15 High Temperature Piezoceramics Obtained by Two-Step Sintering. Ceram. Int. 42, 7868 (2016).

    Article  CAS  Google Scholar 

  29. J.H. Kim, D.S. Kim, S.H. Han, H.W. Kang, H.G. Lee, J.S. Kim, and C.I. Cheon, Preparation of CuO-Doped (K, Na, Li)(Nb, Ta)O3 Ceramics with a Homogeneous Microstructure by Two-Step Sintering for Multilayered Piezoelectric Energy Harvesters. Matter. Lett. 241, 202 (2019).

    Article  CAS  Google Scholar 

  30. Y. Zhang, M. Li, S. Yang, and J. Zhai, Low-Temperature Sintering of KNN-Based Lead Free Ceramics. Solid State Commun. 324, 114133 (2021).

    Article  CAS  Google Scholar 

  31. Y. Zhang, J. Zhai, and S. Xue, Effect of Three Step Sintering on Piezoelectric Properties of KNN-Based Lead Free Ceramics. Chem. Phys. Lett. 758, 137906 (2020).

    Article  CAS  Google Scholar 

  32. F. Benabdallah, C. Elissalde, U.C. Seu, D. Michau, A.P. Quintin, M. Gayot, P. Garreta, H. Khemakhem, and M. Maglione, Structure-microstructure-property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering. J. Eur. Ceram. Soc. 35, 4153 (2015).

    Article  CAS  Google Scholar 

  33. D. Kuscer, A. Kocjan, M. Majcen, A. Meden, K. Radan, J. Kovac, and B. Malic, Evolution of Phase Composition and Microstructure of Sodium Potassium Niobate-Based ceramic During Pressure-Less Spark Plasma Sintering and Post-Annealing. Ceram. Int. 45, 10429 (2019).

    Article  CAS  Google Scholar 

  34. V. Bijalwan, V. Prajzler, J. Erhart, H. Tan, P. Roupcova, D. Sobola, P. Tofel, and K. Maca, Rapid Pressure-Less and Spark Plasma Sintering of (Ba0.85Ca0.15Zr0.1T0.9)O3 Lead-Free Piezoelectric Ceramics. J. Eur. Ceram. Soc. 41, 2514 (2021).

    Article  CAS  Google Scholar 

  35. F. Delorme, C. Chen, F. Schoenstein, N. Jaber, F. Jean, M. Bah, Q. Simon, T. Chartier, P. Laffez, I.M. Laffez, and F. Giovannelli, Low Intrinsic Thermal Conductivity of Spark Plasma Sintered Dense KNbO3 and NaNbO3 Perovskite Ceramics. Thermochim Acta 695, 178807 (2021).

    Article  CAS  Google Scholar 

  36. S. Sharma, R.K. Patel, C. Prakash, and P. Kumar, Structural, Dielectric and Ferroelectric Study of microwave Sintered Lanthanum Substituted BaTiO3 Ceramics. Mater. Chem. Phys. 130, 191 (2011).

    Article  CAS  Google Scholar 

  37. R.K. Sonia, P. Patel, C. Prakash, C. Prakash, and D.K. Agrawal, Low Temperature Synthesis and Dielectric, Ferroelectric and Piezoelectric Study of Microwave Sintered BaTiO3 Ceramics. Ceram. Int. 38, 1585 (2012).

    Article  CAS  Google Scholar 

  38. Z. Sun, Y. Pu, Z. Dong, Y. Hu, P. Wang, X. Liu, and Z. Wang, Impact of Fast Microwave Sintering on the Grain Growth, Dielectric Relaxation and Piezoelectric Properties on Ba0.18Ca0.02Ti0.09Zr0.10O3 Lead-Free Ceramics Prepared by Different Methods. Ceram. Int. 41, 163 (2015).

    Google Scholar 

  39. M.R. Bafandeh, R. Gharahkhani, and J.S. Lee, Dielectric and Piezoelectric Properties of sodium Potassium Niobate-Based Ceramics Sintered in Microwave Furnace. Mater. Chem. Phys. 156, 254 (2015).

    Article  CAS  Google Scholar 

  40. K. Orlik, Y. Lorgouilloux, P. Marchet, A. Thuault, F. Jean, M. Rguiti, and C. Courtois, Influence of Microwave Sintering on Electrical Properties of BCTZ Lead Free Piezoelectric Ceramics. J. Eur. Ceram. Soc. 40, 1212 (2020).

    Article  CAS  Google Scholar 

  41. S.W. Zhang, H. Zhang, B.P. Zhang, and G. Zhao, Dielectric and Piezoelectric Properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 Ceramics Sintered in a Protective Atmosphere. J. Eur. Ceram. Soc. 29, 3235 (2009).

    Article  CAS  Google Scholar 

  42. X. Vendrell, J.E. Garcia, F.R. Marcos, D.A. Ochoa, L. Mestres, and J.F. Fernandez, Exploring Different Sintering Atmospheres to Reduce Nonlinear Response of Modified KNN Piezoceramics. J. Eur. Ceram. Soc. 33, 825 (2013).

    Article  CAS  Google Scholar 

  43. C.S. Chen, P.Y. Chen, C.S. Tu, T.L. Chang, and C.K. Chai, The Effects of Sintering Atmosphere on Microstructures and Electrical Properties of Lead-Free (Bi0.5Na0.5)TiO3-Based Ceramics. Ceram. Int. 40, 9591 (2014).

    Article  CAS  Google Scholar 

  44. L. Gao, S. Dursun, A.E. Gurdal, E. Hennig, S. Zhang, and C.A. Randall, Atmospheric Controlled Processing Enabling Highly Textured NKN with Enhanced Piezoelectric Performance. J. Eur. Ceram. Soc. 39, 963 (2019).

    Article  CAS  Google Scholar 

  45. R. Cong, G. Qiu, C. Yue, M. Guo, F. Cheng, and M. Zhang, Oxygen-Enriched Sintering for Improved Piezoelectric Performance of (K0.5Na0.5)(Ta0.3Nb0.7)O3 Lead-Free Ceramics: The Impact of Defects. Ceram. Int. 44, 19764 (2018).

    Article  CAS  Google Scholar 

  46. D.U. Seifert, L. Li, K.Y. Lee, M.J. Hoffmann, D.C. Sinclair, and M. Hinterstein, Processing and Properties of translucent Bismuth Sodium Titanate Ceramics. J. Eur. Ceram. Soc. 41, 1221 (2021).

    Article  CAS  Google Scholar 

  47. T. Reimann, S. Frohlich, A. Bochmann, A. Kynast, M. Topfer, E. Hennig, and J. Topfer, Low pO2 Sintering and Reoxidation of Lead-Free KNNLT Piezoceramic Laminates. J. Eur. Ceram. Soc. 41, 344 (2021).

    Article  CAS  Google Scholar 

  48. K.I. Rybakov, E.A. Olevsky, and E.V. Krikun, Microwave Sintering: Fundamentals and Modeling. J. Am. Ceram. Soc. 96, 1003 (2013).

    Article  CAS  Google Scholar 

  49. T.A. Duong, H.S. Han, Y.H. Hong, Y.S. Park, H.T.K. Nguyen, T.H. Dinh, and J.S. Lee, Dielectric and Piezoelectric Properties of Bi1/2Na1/2TiO3-SrTiO3 Lead-Free Ceramics. J. Electroceram. 41, 73 (2018).

    Article  CAS  Google Scholar 

  50. C.C. Wang, Z. Meini, and X. Wei, High temperature Dielectric Relaxation in Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals. J. Am. Ceram. Soc. 96, 1521 (2013).

    Article  CAS  Google Scholar 

  51. X. Li, X. Fan, Z. Xi, P. Liu, W. Long, P. Fang, F. Guo, and R. Nan, Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal. Crystal 9, 241 (2019).

    Article  Google Scholar 

  52. V.V. Westphal, W. Kleemann, and M.D. Glinchuk, Diffuse Phase Transitions and Random-Field-Induced Domain States of the Relaxor Ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847 (1992).

    Article  CAS  Google Scholar 

  53. K. Wang, A. Hussain, W. Jo, and J. Rodel, Temperature-Dependent Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 Lead-Free Piezoceramics. J. Am. Ceram. Soc. 95, 2241 (2012).

    Article  CAS  Google Scholar 

  54. T. Wang, J. Ma, B. Wu, F. Wang, S. Wang, M. Chen, and W. Wu, Structure and Electrical Properties of Microwave Sintered BTS-BCT-xBF Lead-Free Piezoelectric. Mater 15, 1789 (2022).

    Article  CAS  Google Scholar 

  55. M. Feizpour, H.B. Bafrooei, R. Hayati, and T. Ebadzadeh, Microwave-Assisted Synthesis and Sintering of Potassium Sodium Niobate Lead-Free Piezoelectric Ceramics. Ceram. Inter 40, 871 (2014).

    Article  CAS  Google Scholar 

  56. M.R. Bafandeh, R. Gharahkhani, M.H. Abbasi, A. Saidi, J.S. Lee, and H.S. Han, Improvement of Piezoelectric and Ferroelectric Properties in (K, Na)NbO3-Based Ceramics via Microwave Sintering. J. Electro. Ceram. 33, 128 (2014).

    Article  CAS  Google Scholar 

  57. O.P. Thakur, C. Prakash, and D.K. Agrawal, Microwave Synthesis and Sintering of Ba0.95Sr0.05TiO3. Mater. Lett. 56, 970 (2002).

    Article  CAS  Google Scholar 

  58. H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering. J. Appl. Phys. 45, 7405 (2006).

    Article  CAS  Google Scholar 

  59. P. Kumar, S. Singh, J.K. Juneja, C. Prakash, and K.K. Raina, Improved Properties of BPT Ceramics Using Microwave Sintering. Mater. Lett. 142, 84 (2015).

    Article  CAS  Google Scholar 

  60. P.S. Abraira, E. Morán, M.E.V. Castrejón, R.V. Ocampo, and L. Pardo, Ba0.9Ca0.1TiO3: Microwave-Assisted Hydrothermal Synthesis and Piezoelectric Properties. Adv. Appl. Ceram. 117, 72 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

JS Lee acknowledges financial support from a National Research Foundation (NRF) of the Republic of Korea Grant (2016R1D1A3B01008169), and HS Han acknowledges financial support from a National Research Foundation (NRF) of the Republic of Korea Grant (2020R1C1C1007375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Bafandeh.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this manuscript and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhlishah, A.D., Lee, SH., Duong, T.A. et al. Characterization of 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 Lead-Free Piezoceramic Fabricated via Conventional and Microwave Sintering. J. Electron. Mater. 51, 7064–7072 (2022). https://doi.org/10.1007/s11664-022-09940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09940-w

Keywords

Navigation