Skip to main content
Log in

Effects of Ni Doping and Silica Gel Bead Support on Characteristics of TiO2 Catalyst

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Titanium dioxide (TiO2) photocatalyst is an excellent solution that can be utilized to decompose organic pollutants. In this report, Ni-doped TiO2 immobilized on silica gel bead by sol–gel process was investigated. The morphology, crystal phase composition, particle size, porosity characteristics, and optical properties of the samples were investigated through scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, N2 isothermal loops, Raman spectroscopy, and ultraviolet–visible (UV–Vis) absorption. The results revealed that Ni2+ uniformly distributed in the TiO2 crystal lattice to replace Ti4+ and that Ni2+ did not change the TiO2 anatase crystal phase. Compared with pure TiO2, the absorption edge of the Ni-doped TiO2 sample exhibited a redshift from 400 nm to 655 nm. Influenced by silica gel bead as catalyst support, the crystal size of Ni-doped TiO2 sample was reduced from 27 nm to 6 nm that led to a blueshift in both Raman and UV–Vis spectra. The photocatalytic enhancement was demonstrated by methyl orange decomposition. Under ultraviolet irradiation, the photocatalytic performance of Ni-doped TiO2 immobilized on silica gel bead was lower compared with pure sample. Opposite to this, Ni-doped TiO2 immobilized on silica gel bead showed photocatalytic enhancement under visible light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Mao, F. Zhang, M. Du, L. Dai, Y. Qian, and H. Pang, Review on Synthesis of Porous TiO2-Based Catalysts for Energy Conversion Systems. Ceram. Int. 47, 25177 (2021).

    Article  CAS  Google Scholar 

  2. S. Riaz and S.-J. Park, An Overview of TiO2-Based Photocatalytic Membrane Reactors for Water and Wastewater Treatments. J. Ind. Eng. Chem. 84, 23 (2020).

    Article  CAS  Google Scholar 

  3. M. Ge, Z. Hu, J. Wei, Q. He, and Z. He, Recent Advances in Persulfate-Assisted TiO2-Based Photocatalysis for Wastewater Treatment: Performances, Mechanism and Perspectives. J. Alloys Compd. 888, 161625 (2021).

    Article  CAS  Google Scholar 

  4. S. Al-Kandari, A.M. Abdullah, H. Al-Kandari, G.K. Nasrallah, M.A. Sharaf, D.S. AlMarzouq, A.M. Mohamed, N. Younes, N. Kafour, and T. Al-Tahtamouni, Eco-Friendly Highly Efficient BN/rGO/TiO2 Nanocomposite Visible-Light Photocatalyst for Phenol Mineralization. Environ. Sci. Pollut. Res. 28, 62771 (2021).

    Article  CAS  Google Scholar 

  5. P. Tamizhdurai, A. Abilarasu, S. Narayanan, S. Ragupathi, M. Govindasamy, A.A. Ghfar, M.M. AL-Anazy, and M. ZOuladsmane, The Catalytic Reactivity of Titanium Dioxide Supported on SBA-15 Catalyst for Selective Oxidation of Benzyl Alcohol. J. Porous Mater. 28, 1787 (2021).

    Article  CAS  Google Scholar 

  6. A.J. Jafari, M. Moslemzadeh, A. Esrafili, and R.R. Kalantary, Synthesis of New Composite based on TiO2 Immobilized in Glass Fibers for Photo-Catalytic Degradation of Chlorobenzene in Aqueous Solutions. Environ. Res. 204B, 112018 (2022).

    Article  Google Scholar 

  7. M.M. Rashid, B. Simončič, and B. Tomšič, Recent Advances in TiO2-Functionalized Textile Surfaces. Surf. Interfaces 22, 100890 (2021).

    Article  CAS  Google Scholar 

  8. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, and R. Ruan, Photocatalytic Degradation of Organic Pollutants using TiO2-Based Photocatalysts: A Review. J. Cleaner Prod. 268, 121725 (2020).

    Article  CAS  Google Scholar 

  9. A.J. Jafari, R.R. Kalantary, A. Esrafili, and M. Moslemzadeh, Photo-Catalytic Degradation of Bisphenol-a From Aqueous Solutions using GF/Fe-TiO2-CQD Hybrid Composite. J. Environ. Health Sci. Eng. 19, 837 (2021).

    Article  CAS  Google Scholar 

  10. T. Raguram and K.S. Rajni, Synthesis and Analysing the Structural, Optical, Morphological, Photocatalytic and Magnetic Properties of TiO2 and Doped (Ni and Cu) TiO2 Nanoparticles by Sol–Gel Technique. Appl. Phys. A 125, 288 (2019).

    Article  CAS  Google Scholar 

  11. M. Nurdin, L.O.A.N. Ramadhan, D. Darmawati, M. Maulidiyah, and D. Wibowo, Synthesis of Ni, N Co-Doped TiO2 Using Microwave-Assisted Method for Sodium Lauryl Sulfate Degradation by Photocatalyst. J. Coat. Technol. Res. 15, 395 (2018).

    Article  CAS  Google Scholar 

  12. M.P. Blanco-Vega, J.L. Guzmán-Mar, M. Villanueva-Rodríguez, L. Maya-Treviño, L.L. Garza-Tovar, A. Hernández-Ramírez, and L. Hinojosa-Reyes, Photocatalytic Elimination of Bisphenol A Under Visible Light using Ni-Doped TiO2 Synthesized by Microwave Assisted Sol-Gel Method. Mater. Sci. Semicond. Process. 71, 275 (2017).

    Article  CAS  Google Scholar 

  13. Y. Liu, Z. Wang, W. Fan, Z. Geng, and L. Feng, Enhancement of the Photocatalytic Performance of Ni-Loaded TiO2 Photocatalyst under Sunlight. Ceram. Int. 40, 3887 (2014).

    Article  CAS  Google Scholar 

  14. M.A.M.L. Jesus, A.M. Ferreira, L.F.S. Lima, G.F. Batista, R.V. Mambrini, and N.D.S. Mohallem, Micro-Mesoporous TiO2/SiO2 Nanocomposites: Sol-Gel Synthesis, Characterization, and Enhanced Photodegradation of Quinoline. Ceram. Int. 47, 23844 (2021).

    Article  CAS  Google Scholar 

  15. S. Li, G. Chen, S. Qiang, Z. Yin, Z. Zhang, and Y. Chen, Micro-Mesoporous TiO2/SiO2 Nanocomposites: Sol-Gel Synthesis, Characterization, and Enhanced Photodegradation of Quinoline. Int. J. Food Microbiol. 331, 108763 (2020).

    Article  CAS  Google Scholar 

  16. A. Barmeh, M.R. Nilforoushan, and S. Otroj, Wetting and Photocatalytic Properties of Ni-Doped TiO2 Coating on Glazed Ceramic Tiles under Visible Light. Thin Solid Films 666, 137 (2018).

    Article  CAS  Google Scholar 

  17. E.V. Eynde, T. Tytgat, M. Smits, S.W. Verbruggen, B. Hauchecorne, and S. Lenaerts, Biotemplated Diatom Silica-Titania Materials for Air Purification. Photochem. Photobiol. Sci. 12, 690 (2013).

    Article  Google Scholar 

  18. J. Park, D.H. Bae, S.Y. Lee, J. Kwak, H.W. Park, and J. Lim, Large-Scale Production of Titania Nano-Coated Silica-Gel Beads by Fluidized Bed Chemical Vapor Deposition. Korean J. Chem. Eng. 24, 347 (2007).

    Article  CAS  Google Scholar 

  19. P. Szołdra, M. Frąc, and W. Pichór, Effect of Sol Composition on the Properties of TiO2 Powders Obtained by the Sol-Gel Method. Powder Technol. 387, 261 (2021).

    Article  Google Scholar 

  20. A. Esrafili, S. Bagheri, M. Kermani, M. Gholami, and M. Moslemzadeh, Simultaneous Adsorption of Heavy Metal Ions (Cu2+ and Cd2+) from Aqueous Solutions by Magnetic Silica Nanoparticles (Fe3O4 @SiO2) Modified using EDTA. Desalin. Water Treat. 158, 207 (2019).

    Article  CAS  Google Scholar 

  21. A.J. Jafari and M. Moslemzadeh, Adsorption of Lead (Pb2+) Onto Salicylic Acid-Methanol Modified Steel Slag from Aqueous Solution: A Cost Analysis. Desalin. Water Treat. 198, 200 (2020).

    Article  CAS  Google Scholar 

  22. D. Li, H. Zheng, Q. Wang, X. Wang, W. Jiang, Z. Zhang, and Y. Yang, A Novel Double-Cylindrical-Shell Photoreactor Immobilized with Monolayer TiO2-Coated Silica Gel Beads for Photocatalytic Degradation of Rhodamine B and Methyl Orange in Aqueous Solution. Sep. Purif. Technol. 123, 130 (2014).

    Article  CAS  Google Scholar 

  23. D. Li, Q. Zhu, C. Han, Y. Yang, W. Jiang, and Z. Zhang, Photocatalytic Degradation of Recalcitrant Organic Pollutants in Water Using a Novel Cylindrical Multi-Column Photoreactor Packed with TiO2-Coated Silica Gel Beads. J. Hazard. Mater. 285, 398 (2015).

    Article  CAS  Google Scholar 

  24. G.R.M. Echavia, F. Matzusawa, and N. Negishi, Photocatalytic Degradation of Organophosphate and Phosphonoglycine Pesticides using TiO2 Immobilized on Silica Gel. Chemosphere 76, 595 (2009).

    Article  CAS  Google Scholar 

  25. S.F. Resende, E.H.M. Nunes, M. Houmard, and W.L. Vasconcelos, Simple Sol–Gel Process to Obtain Silica-Coated Anatase Particles with Enhanced TiO2-SiO2 Interfacial Area. J. Colloid Interface Sci. 433, 211 (2014).

    Article  CAS  Google Scholar 

  26. N.M. Nghia, N. Negishi, and N.T. Hue, Enhanced Adsorption and Photocatalytic Activities of Co-Doped TiO2 Immobilized on Silica for Paraquat. J. Electron. Mater. 47, 692 (2018).

    Article  CAS  Google Scholar 

  27. D. Komaraiah, E. Radha, J. James, N. Kalarikkal, J. Sivakumar, M.V.R. Reddy, and R. Sayanna, Effect of Particle Size and Dopant Concentration on the Raman and the Photoluminescence Spectra of TiO2:Eu3+ Nanophosphor Thin Films. J. Lumin. 211, 320 (2019).

    Article  CAS  Google Scholar 

  28. B. Nazir, U. Rehman, S. Arshad, M.I. Arshad, N. Sabir, M.A. Javid, F. Iqbal, and M.A. Nabi, Enhanced Photo-Absorption of Anatase TiO2 with Ni and Eu doping: A First Principle Study. Mater. Today: Proc. 47, S94 (2021).

    Google Scholar 

  29. N. Arora and D.P. Joshi, Band Gap Dependence of Semiconducting Nano-Wires on Cross-Sectional Shape and Size. Indian J. Phys. 91, 1493 (2017).

    Article  CAS  Google Scholar 

  30. K. Yamanaka and T. Morikawa, Charge-Carrier Dynamics in Nitrogen-Doped TiO2 Powder Studied by Femtosecond Time-Resolved Diffuse Reflectance Spectroscopy. J. Phys. Chem. C 116, 1286 (2012).

    Article  CAS  Google Scholar 

  31. K.C. Nguyen, N.M. Nguyen, V.Q. Duong, K.V. Nguyen, H.M. Nguyen, T.V. Dao, Q.V. Nguyen, D.A. Nguyen, H.T. Vu, C.T. Dang, and H.N. Phan, Magnetic Ni-Doped TiO2 Photocatalysts for Disinfection of Escherichia Coli Bacteria. J. Electron. Mater. 50, 1942 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Hanoi National University of Education under grant number SPHN20-02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nghia Manh Nguyen or Hue Thi Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.M., Nguyen, H.T., Negishi, N. et al. Effects of Ni Doping and Silica Gel Bead Support on Characteristics of TiO2 Catalyst. J. Electron. Mater. 51, 6204–6212 (2022). https://doi.org/10.1007/s11664-022-09867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09867-2

Keywords

Navigation