Skip to main content
Log in

Lithium titanate modified separators for long cycling life lithium metal anode

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium dendrites produced during the process of lithium metal cycling lead to poor cycle stability and safety problems, seriously hindering the practical application and commercialization of lithium metal. In this work, a facile method is used to coat lithium titanate (LTO) onto polypropylene (PP), resulting in the formation of a lithium titanate diaphragm (LTO@PP). The characteristic properties such as morphology, EIS, and electrochemical performance of the LTO@PP diaphragm are systematically investigated. The results indicate that during the first discharge cycle, Li4Ti5O12 can undergo lithiation, facilitating the transfer of Li+ ions and thereby accelerating the migration kinetics of lithium ions within the LTO@PP diaphragm. The LTO@PP-based cell can stably cycle for more than 4800 h in a Li symmetrical battery at a high current density of 3 mA cm−2, with an overvoltage as low as 6 mV. The Li | Cu battery can stably cycle for more than 380 cycles under a deposition rate of 1 mAh/cm2. Additionally, the LTO@PP diaphragm-based LFP cell displays a high capacity retention rate and excellent rate performance. Compared with current diaphragm modification methods, this work provides a promising prospect for the simple and rapid preparation of modified diaphragms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors.

References

  1. Pomerantseva E, Bonaccorso F, Feng XL, Cui Y, Gogotsi Y (2019) Energy storage: The future enabled by nanomaterials. Science 366(6468):969

    Article  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Chen XR, Hou TZ, Li BQ, Cheng XB, Zhang R, Zhang Q (2019) Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv 5(2):eaau7728

  4. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  PubMed  Google Scholar 

  5. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    Article  CAS  PubMed  Google Scholar 

  6. Man JZ, Liu K, Zhang HB, Du YH, Yin JP, Wang XY, Sun JC (2021) Dendrite-free lithium metal anode enabled by ion/electron-conductive N-doped 3D carbon fiber interlayer. J Power Sources 489:229524

  7. Qian JF, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362

  8. Lin DC, Liu YY, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

    Article  CAS  PubMed  Google Scholar 

  9. Liu YJ, Wu YX, Zheng JL, Wang Y, Ju ZJ, Lu GX, Sheng OW, Nai JW, Liu TF, Zhang WK, Tao XY (2021) Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes. Nano Energy 82:105723

    Article  CAS  Google Scholar 

  10. Zhao Q, Tu ZY, Wei SY, Zhang KH, Choudhury S, Liu XT, Archer LA (2018) building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angewandte Chemie-Int Edition 57(4):992–996

    Article  CAS  Google Scholar 

  11. Zhu YH, Cao J, Chen H, Yu QP, Li BH (2019) High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batterie. J Mater Chem A 7(12):6832–6839

    Article  CAS  Google Scholar 

  12. Cao DX, Zhao YY, Sun X, Natan A, Wang Y, Xiang PY, Wang W, Zhu HL (2020) Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state Li metal batteries and beyond. ACS Energy Lett 5(11):3468–3489

    Article  CAS  Google Scholar 

  13. Lu YY, Tu ZY, Archer LA (2014) Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater 13(10):961–969

    Article  CAS  PubMed  Google Scholar 

  14. Lin CF, Qi Y, Gregorczyk K, Lee SB, Rubloff GW (2018) Nanoscale protection layers to mitigate degradation in high-energy electrochemical energy storage systems. Acc Chem Res 51(1):97–106

    Article  CAS  PubMed  Google Scholar 

  15. Hu AJ, Chen W, Du XC, Hu Y, Lei TY, Wang HB, Xue LX, Li YY, Sun H, Yan YC, Long JP, Shu CZ, Zhu J, Li BH, Wang XF, Xiong J (2021) An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci 14(7):4115–4124

    Article  CAS  Google Scholar 

  16. Ni ZC, Yang D, Wang YJ, Yang WH, Deng BN, Hou JY, Zhang YY, Li X, Zhang YJ (2022) The effect of alloy type of lithophilic Cu-Sn interface layer on the deposition/stripping behavior of lithium metal anode. J Alloys Compd 906:164307

  17. Ni ZC, Zhang YY, Zhu BW, Wang YJ, Wang Y, Li X, Zhang YJ, Sun SG (2022) A multifunctional Cu6Sn5 interface layer for dendritic-free lithium metal anode. J Colloid Interface Sci 605:223–230

    Article  CAS  PubMed  Google Scholar 

  18. Mu TS, Lu HF, Ren Y, Wan X, Xu X, Tan SP, Ma YL, Yin GP (2022) Interface defect chemistry enables dendrite-free lithium metal anodes. Chem Eng J 437(1):135109

  19. Zhao CZ, Chen PY, Zhang R, Chen X, Li BQ, Zhang XQ, Cheng XB, Zhang Q (2018) An ion redistributor for dendrite-free lithium metal anodes. Sci Adv 4(11):eaat3446

  20. Zhang XJ, Chen YF, Ma F, Chen X, Wang B, Wu Q, Zhang ZH, Liu DW, Zhang WL, He JR, Xu ZL (2022) Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chem Eng J 436:134945

  21. Yao ZR, Zhu KJ, Li X, Zhang J, Li J, Wang J, Yan K, Liu JS (2021) Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-meta. ACS Appl Mater Interfaces 13(10):11958–11967

  22. Xia S, Song J, Zhou Q, Liu LL, Ye JL, Wang T, Chen YH, Liu YK, Wu YP, van Ree T (2023) A separator with double coatings of Li4Ti5O12 and conductive carbon for Li-S battery of good electrochemical performance. Adv Sci 4(11):2301386

  23. Feckl JM, Fominykh K, Doblinger M, Fattakhova-Rohlfing D, Bein T (2012) Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angewandte Chemie-International Edition 51(30):7459–7463

    Article  CAS  PubMed  Google Scholar 

  24. Tran B, Oladeji IO, Wang ZD, Calderon J, Chai GY, Atherton D, Zhai L (2013) Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode. Electrochim Acta 88:536–542

    Article  CAS  Google Scholar 

  25. Wang L, Wang F, Zhu JF, Zhang X, Tang Y, Wang X (2018) Synthesis and electrochemical performance of three-dimensional ordered hierarchically porous Li4Ti5O12 for high performance lithium ion batteries. Ceram Int 44(2):1296–1303

    Article  CAS  Google Scholar 

  26. Wang Y, Zhang YX, Yang WJ, Mao SS, Liu W, Guo R, Luo Y, Xie JY (2018) CFx addition improves performance of batteries with Li4Ti5O12 electrodes. Mater Today Energy 10:249–253

    Article  Google Scholar 

  27. Nuroniah I, Priyono S, Subhan A, Prihandoko B, Suhandi A, Sohib A (2019) Synthesis and characterization of Al-doped Li4Ti5O12 with sol gel method for anode material lithium ion battery. Mater Today-Proc 13(1):65–70

Download references

Funding

This work was financially supported by Yunnan Fundamental Research Projects (Grant Nos. 202101AW070006 and 202202AG050003).

Author information

Authors and Affiliations

Authors

Contributions

Dong Yang: writing—original draft and data curation. Dan You: project administration, conceptualization, and investigation. Bingnan Deng: visualization. Qian Wang: editing. Wengxiang Ai: validation. ZhicongNi: editing. Yuejing Zeng: editing. Yiyong Zhang: conceptualization and writing—review and editing. Xue Li: supervision and resources.

Corresponding authors

Correspondence to Xue Li or Yiyong Zhang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 683 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., You, D., BingnanDeng et al. Lithium titanate modified separators for long cycling life lithium metal anode. Ionics 29, 5161–5168 (2023). https://doi.org/10.1007/s11581-023-05250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05250-1

Keywords

Navigation