Skip to main content
Log in

Design and Analysis of a Field Plate Engineered High Electron Mobility Transistor for Enhanced Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the impact of drain drift region and vertical scaling on breakdown performance is investigated through exhaustive technology computer-aided design simulations. The breakdown behavior for drain-connected, gate-connected and dual field plate designs is explored and the physical insights were developed by studying their electric field and potential profile intricacies. Useful optimization laws are unraveled, and by this, breakdown voltage is pushed to higher limits by engineering the gallium nitride (GaN) buffer thickness, drain drift region and field plate length. A thicker GaN buffer with a field plate and larger drain drift region improve the breakdown voltage to maximum values by mitigating punch through and impact ionization mechanisms of performance degradation. The proposed dual field plate combines the merits of using thicker buffer, extended gate drain drift region and both field plates emerging as the optimized design. The breakdown limiting peak electric field is mitigated in dual field plate designs enhancing its breakdown voltage 1.4 to 1.7 times that of a conventional high electron mobility transistor without field plate. Finally, the input and output characteristics are also depicted along with the frequency response. These results demonstrate the efficacy of field plates in reducing and redistributing the critical peak electric fields and thicker GaN buffer giving further cushion to push the breakdown voltage to higher values by negotiating vertical effects such as punch through and lends design guidelines for further improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. U.K. Mishra, L. Shen, T.E. Kazior, and Y. Wu, Proc. IEEE 96, 287 (2008)

    Article  CAS  Google Scholar 

  2. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999).

    Article  CAS  Google Scholar 

  3. E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 57, 3050 (2010).

    Article  CAS  Google Scholar 

  4. D. Visalli, M. Van Hove, J. Derluyn, P. Srivastava, D. Marcon, J. Das, M.R. Leys, S. Degroote, K. Cheng, E. Vandenplas, M. Germain, and G. Borghs, IEEE Trans. Electron Devices 57, 3333 (2010).

    Article  CAS  Google Scholar 

  5. T. Kabemura, S. Ueda, Y. Kawada, and K. Horio, IEEE Trans. Electron Devices 65, 3848 (2018).

    Article  CAS  Google Scholar 

  6. B. Liao, Q. Zhou, J. Qin, and H. Wang, Electronics 8 (2019).

  7. A. Toprak, S. Osmanoglu, M. Ozturk, D. Yilmaz, O. Cengiz, O. Sen, B. Butun, S. Ozcan, and E. Ozbay, Semicond. Sci. Technol. 33, 125017 (2018).

  8. V. Joshi, S.P. Tiwari, and M. Shrivastava, IEEE Trans. Electron Devices (2019). https://doi.org/10.1109/TED.2018.2878770

    Article  Google Scholar 

  9. N.K. Subramani, J. Couvidat, A.A. Hajjar, J. Nallatamby, and R. Quere, IEEE J. Electron Devices Soc. 39, 107 (2018).

    Article  CAS  Google Scholar 

  10. E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 55(12), 3354 (2008).

    Article  CAS  Google Scholar 

  11. P. Murugapandiyan, A. Mohanbabu, V.R. Lakshmi, M. Wasim, and K.M. Sundaram, J. Electron Mater. 49, 524 (2020).

    Article  CAS  Google Scholar 

  12. H. Chiu, C. Yang, H. Wang, F. Huang, H. Kao, and F. Chien, IEEE Trans. Electron Devices 60, 3877 (2013).

    Article  CAS  Google Scholar 

  13. Y.W. Lian, Y.S. Lin, H.C. Lu, Y.C. Huang, and S.H. Hsu, IEEE Electron Device Lett. (2012). https://doi.org/10.1109/LED.2012.2197171

    Article  Google Scholar 

  14. A. Soni, and M. Shrivastava, IEEE Trans. Electron Devices (2020). https://doi.org/10.1109/TED.2020.2976636

  15. W. Mao, W.B. She, C. Yang, J.F. Zhang, X.F. Zheng, C. Wang, and Y. Hao, Chin. Phys. B (2016). https://doi.org/10.1088/1674-1056/25/1/017303

  16. Z. Sheng-Lei, W. Yuan, Y. Xiao-Lei, L. Zhi-Yu, W. Chong, Z. Jin-Cheng, M. Xiao-Hua, and H. Yue, Chin. Phys. B (2014). https://doi.org/10.1088/1674-1056/23/9/097305

    Article  Google Scholar 

  17. M.T. Hassan, T. Asano, H. Tokuda, and M. Kuzuhara, IEEE Electron Device Lett. (2013). https://doi.org/10.1109/LED.2013.2280712

    Article  Google Scholar 

  18. E. Bahat-Treidel, O. Hilt, F. Brunner, V. Sidorov, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 57, 1208 (2010)

    Article  Google Scholar 

  19. A. Ray, S. Bordoloi, B. Sarkar, P. Agarwal, and G. Trivedi, J. Electron Mater. 49, 2018 (2020)

    Article  CAS  Google Scholar 

  20. S. Karmalker, and U.K. Mishra, Solid State Electron. (2001). https://doi.org/10.1016/S0038-1101(01)00158-7

    Article  Google Scholar 

  21. G. Xie, E. Xu, J. Lee, N. Hashemi, B. Zhang, F.Y. Fu, and W.T. Ng, IEEE Electron Device Lett. (2015). https://doi.org/10.1109/LED.2012.2188492

  22. S. Karmalkar, and U.K. Mishra, IEEE Trans. Electron Devices 48, 1515 (2001).

    Article  CAS  Google Scholar 

  23. S. Aamir Ahsan, S. Ghosh, S. Khandelwal, and Y.S. Chauhan, IEEE Trans. Electron Devices 64, 816 (2017).

    Article  Google Scholar 

  24. H. Huang, Y.C. Liang, G.S. Samudra, T. Chang, and C. Huang, IEEE Trans. Power Electron. 29, 2164 (2014).

    Article  Google Scholar 

  25. G. Meneghesso, M. Meneghini, and E. Zanoni, Jpn. J. Appl. Phys. 53, 100211 (2014).

  26. A.M. Bhat, N. Shafi, C. Sahu, and C. Periasamy, J. Electron Mater. (2021). https://doi.org/10.1007/s11664-021-09151-9

    Article  Google Scholar 

  27. N.K. Subramani, J. Couvidat, A.A. Hajjar, J. Nallatamby, R. Sommet, R. Quere, IEEE Electron Device Lett. 5, 175 (2017).

    Article  CAS  Google Scholar 

  28. I.B. Renowa, S.L. Selvaraj, and T. Egawa, IEEE Electron Device Lett. (2011). https://doi.org/10.1109/LED.2011.2166052

  29. M. Borga, M. Meneghini, S. Stoffels, M.V. Hove, M. Zhao, X. Li, S. Decoutere, E. Zanoni, and M. Meneghesso, Microelectron. Reliab. (2011). https://doi.org/10.1016/j.microrel.2018.06.036

  30. A.S.A. Fletcher, D. Nirmal, J. Ajayan, and L. Arivazhagan, Silicon 13, 1591–1598 (2021). https://doi.org/10.1007/s12633-020-00549-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasif Mohammad Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, A.M., Shafi, N., Poonia, R. et al. Design and Analysis of a Field Plate Engineered High Electron Mobility Transistor for Enhanced Performance. J. Electron. Mater. 51, 3773–3781 (2022). https://doi.org/10.1007/s11664-022-09646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09646-z

Keywords

Navigation