Skip to main content
Log in

Pitfalls in Electromagnetic Skin-Depth Determination

  • Commentary
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Skin depth is a fundamental material property that governs the electromagnetic behavior of materials. Unfortunately, there are significant and common pitfalls in the analysis of the experimental results on electromagnetic absorption for the purpose of determining skin depth. This commentary is aimed at covering theses pitfalls for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G.M. Kunkel, Shielding of Electromagnetic Waves (Cham: Springer, 2020).

    Book  Google Scholar 

  2. S.B. Kondawar, P.R. Modak, Theory of EMI shielding, in Materials for Potential EMI Shielding Applications, ed. by J. Kuruvilla, W. Runcy, G. Gejo (Elsevier, 2020), p. 9

  3. S.C. Yener, and O. Cerezci, Material analysis and application for radio frequency electromagnetic wave shielding. Acta Phys. Pol. A 129, 1 (2016).

    Google Scholar 

  4. Y. Wang, C. Yan, S. Cheng, Z. Xu, X. Sun, Y. Xu, J. Chen, Z. Jiang, K. Liang, and Z. Feng, Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv. Funct. Mater. 29, 1902579 (2019).

    Article  Google Scholar 

  5. A. Kamyshny, J. Steinke, and S. Magdassi, Metal-based ink jet inks for printed electronics. Open Appl. Phys. J. 4, 19 (2011).

    Article  CAS  Google Scholar 

  6. N. Jackson, J. Buckley, C. Clarke, and F. Stam, Manufacturing methods of stretchable liquid metal-based antenna. Microsyst. Technol. 25, 3175 (2019).

    Article  CAS  Google Scholar 

  7. P.K. Loharkar, A. Ingle, and S. Jhavar, Parametric review of microwave-based materials processing and its applications. J. Mater. Res. Technol. 8, 3306 (2019).

    Article  CAS  Google Scholar 

  8. R.R. Mishra, and A.K. Sharma, Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. A 81, 78 (2016).

    Article  CAS  Google Scholar 

  9. H. Mei, X. Zhao, X. Gui, D. Lu, D. Han, S. Xiao, and L. Cheng, SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding. Ceram. Int. 45, 17144 (2019).

    Article  CAS  Google Scholar 

  10. Y. Qing, Q. Wen, L. Fa, and W. Zhou, Temperature dependence of electromagnetic properties of graphene nanosheet reinforced alumina ceramics in X-band. J. Mater. Chem. C 4, 4853 (2016).

    Article  CAS  Google Scholar 

  11. D. Kong, J. Li, A. Guo, and X. Xiao, High temperature electromagnetic shielding shape memory polymer composite. Chem. Eng. J. (Amsterdam, Netherlands) 408, 127365 (2021).

    CAS  Google Scholar 

  12. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, and J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. (Weinheim, Germany) 26, 3484 (2014).

    Article  CAS  Google Scholar 

  13. B. Wen, M. Cao, Z. Hou, W. Song, L. Zhang, M. Lu, H. Jin, X. Fang, W. Wang, and J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124 (2013).

    Article  CAS  Google Scholar 

  14. F. Qin, Z. Yan, J. Fan, J. Cai, X. Zhu, and X. Zhang, Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire-PEDOT: PSS composite for high power microwave shielding. Macromol. Mater. Eng. 306, 2000607 (2021).

    Article  CAS  Google Scholar 

  15. W. Xin, M. Ma, and F. Chen, Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and Joule heating performances for electromagnetic interference shielding. ACS Appl. Nano Mater. 4, 7234 (2021).

    Article  CAS  Google Scholar 

  16. M. Alrahili, R. Peroor, V. Savchuk, K. McNear, and A. Pinchuk, Morphology dependence in photothermal heating of gold nanomaterials with near-infrared laser. J. Phys. Chem. C 124, 4755 (2020).

    Article  CAS  Google Scholar 

  17. https://www.nde-ed.org/Physics/X-Ray/attenuationCoef.xhtml. As viewed 19 Oct 19

  18. https://en.wikipedia.org/wiki/Attenuation_coefficient. As viewed 19 Oct 2021

  19. D.D.L. Chung, Functional Materials, 2nd ed., (Singapore: World Sci. Pub, 2022).

    Google Scholar 

  20. M. Fox, Optical Properties of Solids, 2nd ed., (London: Oxford University Press, 2010).

    Google Scholar 

  21. S.A. Schelkunoff, Electromagnetic Waves, 10th ed., (New York: D. Van Nostrand, 1943).

    Google Scholar 

  22. S. Thomas, and S.M. Zachariah eds., Nanostructured Materials for Electromagnetic Interference Shielding. (Boca Raton: CRC Press, 2021).

    Google Scholar 

  23. D.D.L. Chung, and M. Ozturk, Radio-wave absorption by aluminum and its dependence on the absorption distance. J. Mater. Sci. 56, 9263 (2021).

    Article  CAS  Google Scholar 

  24. H. Guan, and D.D.L. Chung, Radio-wave electrical conductivity and absorption-dominant interaction with radio wave of exfoliated-graphite-based flexible graphite, with relevance to electromagnetic shielding and antennas. Carbon 157, 549 (2020).

    Article  CAS  Google Scholar 

  25. M.H. Al-Saleh, and U. Sundararaj, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D Appl. Phys. 46, 035304 (2013).

    Article  Google Scholar 

  26. R. Ram, D. Khastgir, and M. Rahaman, Electromagnetic interference shielding effectiveness and skin depth of poly(vinylidene fluoride)/particulate nano-carbon filler composites: prediction of electrical conductivity and percolation threshold. Polym. Int. 68, 1194 (2019).

    Article  CAS  Google Scholar 

  27. V. Lalan, and S. Ganesanpotti, Broadband electromagnetic response and enhanced microwave absorption in carbon black and magnetic Fe3O4 nanoparticles reinforced polyvinylidenefluoride composites. J. Electron. Mater. 49, 1666 (2020).

    Article  CAS  Google Scholar 

  28. H. Guan, and D.D.L. Chung, Absorption-dominant radio-wave attenuation loss of metals and graphite. J. Mater. Sci. 56, 8037 (2021).

    Article  CAS  Google Scholar 

  29. W.-L. Song, M.-S. Cao, Lu. Ming-Ming, S. Bi, C.-Y. Wang, J. Liu, J. Yuan, and L.-Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67 (2014).

    Article  CAS  Google Scholar 

  30. Z. Yang, Y. Zhang, and B. Wen, Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design. Compos. Sci. Technol. 178, 41 (2019).

    Article  CAS  Google Scholar 

  31. C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi, Gu. Hongbo, J. Kong, D. Cao, and Gu. Junwei, Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11, 22590 (2019).

    Article  CAS  Google Scholar 

  32. Y. Zhang, T. Pan, and Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J (Amsterdam, Netherlands) 389, 124433 (2020).

    Google Scholar 

  33. Y. Zhang, Z. Yang, and B. Wen, An ingenious strategy to construct helical structure with excellent electromagnetic shielding performance. Adv. Mater. Interfaces 6, 1900375 (2019).

    Article  Google Scholar 

  34. S.P. Pawar, M. Gandi, C. Saraf, and S. Bose, Exceptional microwave absorption in soft polymeric nanocomposites facilitated by engineered nanostructures. J. Mater. Chem. C 4, 4954 (2016).

    Article  CAS  Google Scholar 

  35. A.V. Menon, G. Madras, and S. Bose, Magnetic alloy-MWNT heterostructure as efficient electromagnetic wave suppressors in soft nanocomposites. ChemistrySelect 2, 7831 (2017).

    Article  CAS  Google Scholar 

  36. E.E. Mensah, Z. Abbas, R.S. Azis, N.A. Ibrahim, and A.M. Khamis, Complex permittivity and microwave absorption properties of OPEFB fiber–polycaprolactone composites filled with recycled hematite (α-Fe2O3) nanoparticles. Polymers 11, 918 (2019). https://doi.org/10.3390/polym11050918.

    Article  CAS  Google Scholar 

  37. M. Green, and X. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics 5, 503 (2019).

    Article  Google Scholar 

  38. N. Joseph, C. Janardhanan, and M.T. Sebastian, Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos. Sci. Technol. 101, 139 (2014).

    Article  CAS  Google Scholar 

  39. V.P. Anju, M. Manoj, P. Mohanan, and S.K. Narayanankutty, A comparative study on electromagnetic interference shielding effectiveness of carbon nanofiber and nanofibrillated cellulose composites. Synth. Met. 247, 285 (2019).

    Article  CAS  Google Scholar 

  40. A.-P. Guo, X.-J. Zhang, Qu. Jia-Kang, S.-W. Wang, J.-Q. Zhu, G.-S. Wang, and L. Guo, Improved microwave absorption and electromagnetic interference shielding properties based on graphene-barium titanate and polyvinylidene fluoride with varying content. Mater. Chem. Front. 1, 2519 (2017).

    Article  CAS  Google Scholar 

  41. D.D.L. Chung, Materials for electromagnetic interference shielding. Mater. Chem. Phys. 255, 123587 (2020).

    Article  CAS  Google Scholar 

  42. L.-C. Jia, Xu. Ling, F. Ren, P.-G. Ren, D.-X. Yan, and Z.-M. Li, Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144, 101 (2019).

    Article  CAS  Google Scholar 

  43. M.F. Lai, C.W. Lou, T.A. Lin, C.H. Wang, and J.H. Lin, High-strength conductive yarns and fabrics: mechanical properties, electromagnetic interference shielding effectiveness, and manufacturing techniques. J. Text. Ins. 112, 347 (2021).

    Article  CAS  Google Scholar 

  44. S.H. Ryu, Y.K. Han, S.J. Kwon, T. Kim, B.M. Jung, S. Lee, and B. Park, Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. (Amsterdam, Netherlands) 428, 131167 (2022).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, D.D.L. Pitfalls in Electromagnetic Skin-Depth Determination. J. Electron. Mater. 51, 1893–1899 (2022). https://doi.org/10.1007/s11664-022-09488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09488-9

Keywords

Navigation