Skip to main content
Log in

AuNPs-Modified Screen-Printed Electrodes (SPCE and SPPtE) for Enhanced Direct Detection of Chloramphenicol

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) with a diameter range of 10–20 nm were synthesised by the electrochemical method. They were used to modify the working electrode surface of both screen-printed carbon electrodes (SPCEs) and screen-printed platinum electrodes (SPPtEs), aiming to identify a reliable electrode for the direct detection of chloramphenicol (CAP). The effect of AuNPs on electrochemical properties including electronic conductivity/resistance, stability, active surface area, and current intensity in SPCEs and SPPtEs was investigated. All modified electrodes showed considerably enhanced electrochemical performance. In particular, for Au/SPCEs, benefiting from the homogeneous distribution of AuNPs, the close connection, and high compatibility, as well as synergistic effects between the AuNPs and working electrode surface, the conductivity, electrochemically active area, and stability were significantly enhanced compared with those of Au/SPPtE. This finding was further confirmed by the results obtained from cyclic and differential pulse voltammetry, with a low detection limit of 0.1 µM compared with that at the SPCE, SPPtE, and Au/SPPtE. Thus, the use of AuNPs to modify SPEs is considered a promising approach to enhance the direct detection of CAP, in which Au/SPCE will be the best choice for developing a sensitive and efficient electrode for detecting CAP in samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.P. Dinos, C.M. Athanassopoulos, D.A. Missiri, P.C. Giannopoulou, I.A. Vlachogiannis, G.E. Papadopoulos, D. Papaioannou, and D.L. Kalpaxis, Antibiotics 5, 20 (2016).

    Article  Google Scholar 

  2. D.B. Wiest, J.B. Cochran, and F.W. Tecklenburg, J. Pediatr. Pharmacol. Ther. 17, 182 (2012).

    Google Scholar 

  3. C. Ambekar, B. Cheung, J. Lee, L. Chan, R. Liang, and C. Kumana, Eur. J. Clin. Pharmacol. 56, 405 (2000).

    Article  CAS  Google Scholar 

  4. V. Thomseth, V. Cejvanovic, E. Jimenez-Solem, K.M. Petersen, H.E. Poulsen, and J.T. Andersen, Acta Ophthalmol. 93, 651 (2015).

    Article  CAS  Google Scholar 

  5. T. El Shamy, and O. Tamizian, Obstet. Gynaecol. Reprod. Med. 28, 136 (2018).

    Article  Google Scholar 

  6. T.R. Murray, K.M. Downey, and A.A. Yunis, J. Lab. Clin. Med. 102, 926 (1983).

    CAS  Google Scholar 

  7. M.D. Barton, Nutr. Res. Rev. 13, 279 (2000).

    Article  CAS  Google Scholar 

  8. J.C. Hanekamp, and A. Bast, Environ. Toxicol. Pharmacol. 39, 213 (2015).

    Article  CAS  Google Scholar 

  9. B. Berendsen, M. Pikkemaat, P. Ro, R. Wegh, M. Van Sisseren, L. Stolker, and M. Nielen, J. Agric. Food Chem. 61, 4004–4010 (2013).

    Article  CAS  Google Scholar 

  10. E. Nordkvist, T. Zuidema, R.G. Herbes, and B.J.A. Berendsen, Food Addit. Contam. Part A 33, 798 (2016).

    Article  CAS  Google Scholar 

  11. J.V. Samsonova, A. Cannavan, and C.T. Elliott, Crit. Rev. Anal. Chem. 42, 50 (2012).

    Article  CAS  Google Scholar 

  12. J.C. Chen, J. Le Shih, C.H. Liu, M.Y. Kuo, and J.M. Zen, Anal. Chem. 78, 3752 (2006).

    Article  CAS  Google Scholar 

  13. R. Karthik, M. Govindasamy, S.M. Chen, V. Mani, B.S. Lou, R. Devasenathipathy, Y.S. Hou, and A. Elangovan, J. Colloid Interface Sci. 475, 46 (2016).

    Article  CAS  Google Scholar 

  14. N.T. Anh, N.X. Dinh, T.N. Pham, L.K. Vinh, L.M. Tung, and A.-T. Le, RSC Adv. 11, 30544 (2021).

    Article  CAS  Google Scholar 

  15. L. Codognoto, E. Winter, K.M. Doretto, G.B. Monteiro, and S. Rath, Microchim. Acta 169, 345 (2010).

    Article  CAS  Google Scholar 

  16. X. Dang, H. Hu, S. Wang, and S. Hu, Microchim. Acta 182, 455 (2015).

    Article  CAS  Google Scholar 

  17. T.N. Pham, N. Van Cuong, N.X. Dinh, H. Van Tuan, V.N. Phan, N. Thi Lan, M.H. Nam, T.D. Thanh, V.D. Lam, N. Van Quy, T.Q. Huy, M.-H. Phan, and A.-T. Le, J. Electrochem. Soc. 168, 026506 (2021).

    Article  CAS  Google Scholar 

  18. S. Panhwar, H. Ilhan, S.S. Hassan, A. Zengin, I.H. Boyacı, and U. Tamer, Electroanalysis 32, 2244 (2020).

    Article  CAS  Google Scholar 

  19. S. Panhwar, S.S. Hassan, R.B. Mahar, K. Carlson, M.U.H. Rajput, and M.Y. Talpur, J. Electrochem. Soc. 166, B227 (2019).

    Article  CAS  Google Scholar 

  20. R. Ahmad, O.S. Wolfbeis, Y.B. Hahn, H.N. Alshareef, L. Torsi, and K.N. Salama, Mater. Today Commun. 17, 289 (2018).

    Article  CAS  Google Scholar 

  21. S. Panhwar, H. Ilhan, A. Aftab, M. Muqeet, H.A. Keerio, G.S. Solangi, Z. Suludere, and U. Tamer, J. Electron. Mater. 50, 7119 (2021).

    Article  CAS  Google Scholar 

  22. S. Panhwar, A. Aftab, H.A. Keerio, H. Ilhan, M. Sarmadivaleh, and U. Tamer, J. Electrochem. Soc. 168, 037514 (2021).

    Article  CAS  Google Scholar 

  23. N.A. Shad, S.Z. Bajwa, N. Amin, A. Taj, and S. Hameed, J. Hazard. Mater. 367, 205 (2019).

    Article  CAS  Google Scholar 

  24. S. Meenakshi, S.J. Sophia, and K. Pandian, Mater. Sci. Eng. C 90, 407 (2018).

    Article  CAS  Google Scholar 

  25. G. Jaysiva, S. Manavalan, S. Chen, P. Veerakumar, M. Keerthi, H. Tu, and A.C.S. Sustain, Chem. Eng. 8, 11088 (2020).

    CAS  Google Scholar 

  26. M. Roushani, Z. Rahmati, S. Farokhi, S.J. Hoseini, and R.H. Fath, Mater. Sci. Eng. C 108, 110388 (2020).

    Article  CAS  Google Scholar 

  27. T. Kokulnathan, T. Sanjay, K. Sharma, S. Chen, and Y. Han-yu, J. Electrochem. Soc. 165, 281 (2018).

    Article  Google Scholar 

  28. T. Kokulnathan, T. Sanjay, K. Sharma, S. Chen, and T. Chen, J. Taiwan Inst. Chem. Eng. 89, 26 (2018).

    Article  CAS  Google Scholar 

  29. S. Guo, and E. Wang, Anal. Chim. Acta 598, 181 (2007).

    Article  CAS  Google Scholar 

  30. P. S. Nnamchi and C. S. Obayi, in Charact. Nanomater. (Elsevier Ltd., 2018), pp. 103–127.

  31. S.P. Selvam, S.R. Chinnadayyala, S. Cho, and K. Yun, Nanomater. 10, 1368 (2020).

    Article  CAS  Google Scholar 

  32. H. Chen, Y. Lyu, A. Fang, G. Lee, L. Karuppasamy, J.J. Wu, C. Lin, S. Anandan, and C. Chen, Nanomaterials 10, 475 (2020).

    Article  CAS  Google Scholar 

  33. C.-J. Huang, P.-H. Chiu, Y.-H. Wang, K.-L. Chen, J.-J. Linn, and C.-F. Yang, J. Electrochem. Soc. 153, D193 (2006).

    Article  CAS  Google Scholar 

  34. V.Q. Khue, T.Q. Huy, V.N. Phan, A. Tuan-Le, D.T. Le Thanh, M. Tonezzer, and N.T. Hong Hanh, Mater. Chem. Phys. 255, 123562 (2020).

    Article  CAS  Google Scholar 

  35. Q.K. Vu, Q.H. Tran, N.P. Vu, T. Le Anh, T.T. Le Dang, T. Matteo, and T.H.H. Nguyen, Mater. Today Commun. 26, 101726 (2021).

    Article  CAS  Google Scholar 

  36. S. Mohammadi, A. Taheri, and Z. Rezayati-Zad, Prog. Chem. Biochem. Res. 1, 1 (2018).

    Article  Google Scholar 

  37. H. Al-johani, E. Abou-hamad, A. Jedidi, C.M. Widdi, J. Viger-gravel, S.S. Sangaru, D. Gajan, D.H. Anjum, S. Ould-chikh, M.N. Hedhili, A. Gurinov, M.J. Kelly, M. El Eter, L. Cavallo, and L. Emsley, Nat. Chem. 9, 890 (2017).

    Article  CAS  Google Scholar 

  38. T. Yang, N. Zhou, Q. Li, Q. Guan, W. Zhang, and K. Jiao, Colloids Surfaces B Biointerfaces 97, 150 (2012).

    Article  CAS  Google Scholar 

  39. A. Jirasirichote, E. Punrat, A. Suea-ngam, and O. Chailapakul, Talanta 175, 331 (2017).

    Article  CAS  Google Scholar 

  40. F. Sundfors, J. Bobacka, A. Ivaska, and A. Lewenstam, Electrochim. Acta 47, 2245 (2002).

    Article  CAS  Google Scholar 

  41. B. Afsharipour, S. Soedirdjo, and R. Merletti, Biomed. Signal Process Control 49, 298 (2019).

    Article  Google Scholar 

  42. Z. Bai, L. Yang, J. Zhang, L. Li, C. Hu, J. Lv, and Y. Guo, J. Power Sources 195, 2653 (2010).

    Article  CAS  Google Scholar 

  43. M. Moglianetti, J. Solla-Gullón, P. Donati, D. Pedone, D. Debellis, T. Sibillano, R. Brescia, C. Giannini, V. Montiel, J.M. Feliu, P.P. Pompa, and A.C.S. Appl, Mater. Interfaces 10, 41608 (2018).

    Article  CAS  Google Scholar 

  44. J. Borowiec, R. Wang, L. Zhu, and J. Zhang, Electrochim. Acta 99, 138 (2013).

    Article  CAS  Google Scholar 

  45. P. Jakubec, V. Urbanová, Z. Medříková, and R. Zbořil, Chem. A Eur. J. 22, 14279 (2016).

    Article  CAS  Google Scholar 

  46. F. Xiao, F. Zhao, J. Li, R. Yan, J. Yu, and B. Zeng, Anal. Chim. Acta 596, 79 (2007).

    Article  CAS  Google Scholar 

  47. H. Zhao, Y. Chen, J. Tian, H. Yu, and X. Quan, J. Electrochem. Soc. 159, J231 (2012).

    Article  CAS  Google Scholar 

  48. L. Yan, C. Luo, W. Cheng, W. Mao, D. Zhang, and S. Ding, J. Electroanal. Chem. 687, 89 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Vietnam Ministry of Science and Technology through the national-level project ĐTĐLCN.17/19

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Quang Huy.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hue, N.T., Pham, T.N., Dinh, N.X. et al. AuNPs-Modified Screen-Printed Electrodes (SPCE and SPPtE) for Enhanced Direct Detection of Chloramphenicol. J. Electron. Mater. 51, 1669–1680 (2022). https://doi.org/10.1007/s11664-022-09434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09434-9

Keywords

Navigation