Skip to main content
Log in

Ultraviolet Light Detection Properties of ZnO/AlN/Si Heterojunction Diodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-quality n-ZnO/AlN/p-Si and n-ZnO/p-Si heterojunction diodes were successfully fabricated by RF sputtering deposition technique. XRD, SEM, and EDX measurements confirm the excellent structural and surface morphological attributes of the grown ZnO thin films. IV measurements were performed and a good rectification ratio of ~ 319 was found for both the diodes. The contrast ratio, being the ratio of current in the UV illumination condition to the current in dark condition, had higher values of ~ 14 for the n-ZnO/p-Si UV detector and ~ 20 for the n-ZnO/AlN/p-Si UV detector at − 5 V. Enhanced performance of the UV detector n-ZnO/p-Si diode due to the use of a buffer layer of aluminum nitride (AlN) between the ZnO and Si, has been found, thus establishing AlN as the material of choice as a buffer layer to improve the UV detection in ZnO/Si-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Jagadish, and S. Pearton, Zinc Oxide Bulk Thin Films Nanostruct. (2006). https://doi.org/10.1016/B978-0-08-044722-3.X5000-3.

    Article  Google Scholar 

  2. Ü. Ozgur, D. Hofstetter, and H. Morkoç, ZnO devices and applications: A review of current status and future prospects. Proc. IEEE (2010). https://doi.org/10.1109/JPROC.2010.2044550.

    Article  Google Scholar 

  3. C.P. Gupta, S.K. Sharma, B. Bhowmik, K.T. Sampath, C. Periasamy, and S. Sancheti, Development of Highly Sensitive and Selective Ethanol Sensors Based on RF Sputtered ZnO Nanoplates. J. Electron. Mater. 48, 3686 (2019). https://doi.org/10.1007/s11664-019-07127-4.

    Article  CAS  Google Scholar 

  4. R. Bhardwaj, P. Sharma, R. Singh, M. Gupta, and S. Mukherjee, High responsivity MgxZn1-xO based ultraviolet photodetector fabricated by dual ion beam sputtering. IEEE Sens. J. (2018). https://doi.org/10.1109/JSEN.2018.2803678.

    Article  Google Scholar 

  5. E. V. Kalinina, A. E. Cherenkov, G. A. Onushkin, Y. I. Alivov, D. C. Look, B. M. Ataev, A. K. Omaev, C. M. Chukichev, ZnO/AlGaN Ultraviolet Light Emitting Diodes, in Zinc Oxide-A Material for Micro- and Optoelectronic Applications. NATO Science Series II: Mathematics, Physics and Chemistry, 194, N. N.H. and E. Terukov, Eds. 2005. https://doi.org/10.1007/1-4020-3475-x_18.

  6. M. Mishra, A. Gundimeda, T. Garg, A. Dash, S. Das, and G. Gupta. Vandana, ZnO/GaN heterojunction based self-powered photodetectors: influence of interfacial states on UV sensing. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.01.192.

    Article  Google Scholar 

  7. M. Riyaj, A. K. Singh, P. A. Alvi, A. Rathi Wavefunctions and optical gain in In0.24Ga0.76N/GaN type-I nano-heterostructure under external uniaxial strain, in Lecture Notes in Electrical Engineering, 2020, 341. https://doi.org/10.1007/978-981-15-0214-9_38.

  8. M. A. Caro, S. Schulz, S. B. Healy, E. P. O’Reilly, Built-in field control in nitride nanostructures operating in the UV, Phys. Status Solidi Curr. Top. Solid State Phys., (2012), https://doi.org/10.1002/pssc.201100501.

  9. B. Hussain, A. Ebong, and I. Ferguson, Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2015.03.017.

    Article  Google Scholar 

  10. R. Pietruszka, B.S. Witkowski, E. Zielony, K. Gwozdz, E. Placzek-Popko, and M. Godlewski, ZnO/Si heterojunction solar cell fabricated by atomic layer deposition and hydrothermal methods. Sol. Energy (2017). https://doi.org/10.1016/j.solener.2017.07.071.

    Article  Google Scholar 

  11. B. Hussain, Improvement in open circuit voltage of n-ZnO/p-Si solar cell by using amorphous-ZnO at the interface. Prog. Photovoltaics Res. Appl. (2017). https://doi.org/10.1002/pip.2906.

    Article  Google Scholar 

  12. B. Hussain, A. Aslam, T.M. Khan, M. Creighton, and B. Zohuri, Electron affinity and bandgap optimization of zinc oxide for improved performance of zno/si heterojunction solar cell using PC1D simulations. Electron. (2019). https://doi.org/10.3390/electronics8020238.

    Article  Google Scholar 

  13. B. Hussain, A. Ebong, and I. Ferguson, Zinc Oxide Silicon Based Heterojunction Solar Cell Model (2015). https://doi.org/10.1109/PVSC.2015.7356242.

    Article  Google Scholar 

  14. C.Y. Tsay, and W.T. Hsu, Comparative studies on ultraviolet-light-derived photoresponse properties of ZnO, AZO, and GZO transparent semiconductor thin films. Materials (Basel) (2017). https://doi.org/10.3390/ma10121379.

    Article  Google Scholar 

  15. X. Fei, J. Luo, S. Duo, H. Zhang, X. Xu, and T. Liu, Effect of temperature on structural and optical properties of ZnO nanorods by hydrothermal method. Science (2014). https://doi.org/10.4028/www.scientific.net/KEM.591.293.

    Article  Google Scholar 

  16. W. Wang, C. Chen, G. Zhang, T. Wang, H. Wu, Y. Liu, and C. Liu, The function of a 60-nm-thick AlN buffer layer in n-ZnO/AlN/p-Si(111). Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-0809-3.

    Article  Google Scholar 

  17. C. Chen, W. Ti, Y. Xu, and Z. Ai, Light emission from an m-plane n-ZnO/p-Si heterojunction with an AlN interlayer. Appl. Phys. Express (2017). https://doi.org/10.7567/APEX.10.011202.

    Article  Google Scholar 

  18. C.P. Gupta, A.K. Singh, P.K. Jain, S.K. Sharma, S. Birla, and S. Sancheti, Electrical transport properties of thermally stable n-ZnO/AlN/p-Si diode grown using RF sputtering. Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.105734.

    Article  Google Scholar 

  19. S. Sharma, B.C. Bayer, V. Skakalova, G. Singh, and C. Periasamy, Structural, electrical, and UV detection properties of ZnO/Si heterojunction diodes. IEEE Trans. Electron Devices (2016). https://doi.org/10.1109/TED.2016.2540721.

    Article  Google Scholar 

  20. S. Sharma, S. Vyas, C. Periasamy, and P. Chakrabarti, Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices Microstruct. 75, 378 (2014). https://doi.org/10.1016/j.spmi.2014.07.032.

    Article  CAS  Google Scholar 

  21. R. Bhardwaj, P. Sharma, R. Singh, and S. Mukherjee, Sb-Doped p-MgZnO/n-Si heterojunction UV photodetector fabricated by dual ion beam sputtering. IEEE Photon. Technol. Lett. 29, 1215 (2017). https://doi.org/10.1109/LPT.2017.2713701.

    Article  CAS  Google Scholar 

  22. S.K. Akay, S. Sarsıcı, and H.K. Kaplan, Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering. Opt. Quant. Electron. (2018). https://doi.org/10.1007/s11082-018-1635-5.

    Article  Google Scholar 

  23. S. Singh, and S.H. Park, A study of Al:ZnO based MSM UV sensors with Ni metal electrodes. Optik (Stuttg) (2017). https://doi.org/10.1016/j.ijleo.2017.08.027.

    Article  Google Scholar 

  24. S.J. Young, L.W. Ji, S.J. Chang, and X.L. Du, ZnO metal-semiconductor-metal ultraviolet photodiodes with Au contacts. J. Electrochem. Soc. (2007). https://doi.org/10.1149/1.2387058.

    Article  Google Scholar 

  25. N.N. Jandow, K. Ibrahim, F.K. Yam, H.A. Hassan, S.M. Thahab, and O.S. Hamad, The study of ZnO MSM UV photodetector with Pd contact electrodes on (PPC) plastic. Optoelectron. Adv. Mater. Rapid Commun. 2, 1036 (2010).

    Google Scholar 

  26. S.J. Young, and Y.H. Liu, High response of ultraviolet photodetector based on Al-doped ZnO nanosheet structures. IEEE J. Sel. Top. Quantum Electron. (2017). https://doi.org/10.1109/JSTQE.2017.2684540.

    Article  Google Scholar 

  27. P. Hazra, S.K. Singh, and S. Jit, Ultraviolet photodetection properties of ZnO/Si heterojunction diodes fabricated by ALD technique without using a buffer layer. J. Semicond. Technol. Sci. (2014). https://doi.org/10.5573/JSTS.2014.14.1.117.

    Article  Google Scholar 

  28. S. Sharma, C. Periasamy, and P. Chakrabarti, Thickness dependent study of RF sputtered ZnO thin films for optoelectronic device applications. Electron. Mater. Lett. (2015). https://doi.org/10.1007/s13391-015-4445-y.

    Article  Google Scholar 

  29. C.P. Gupta, P.K. Jain, U. Chand, S.K. Sharma, S. Birla, and S. Sancheti, Effect of annealing temperature on switching characteristics of zinc oxide based RRAM device. Science (2019). https://doi.org/10.1109/ICITAET47105.2019.9170219.

    Article  Google Scholar 

  30. H.-L. Lu, Y.-Z. Gu, Y. Zhang, X.-Y. Liu, P.-F. Wang, Q.-Q. Sun, S.-J. Ding, and D.W. Zhang, Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al_2O_3 buffer layer. Opt. Express (2014). https://doi.org/10.1364/oe.22.022184.

    Article  Google Scholar 

  31. L. Wang, Y. Pu, Y.F. Chen, C.L. Mo, W.Q. Fang, C.B. Xiong, J.N. Dai, and F.Y. Jiang, MOCVD growth of ZnO films on Si(1 1 1) substrate using a thin AlN buffer layer. J. Cryst. Growth (2005). https://doi.org/10.1016/j.jcrysgro.2005.06.058.

    Article  Google Scholar 

  32. P. Scherrer, Determination of the internal structure and size of colloid particles by x-rays, Göttinger Nachrichten Gesell, (1918).

  33. G.K. Williamson, and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. (1953). https://doi.org/10.1016/0001-6160(53)90006-6.

    Article  Google Scholar 

  34. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S.N. Dolia, and P.A. Alvi, Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-05093-5.

    Article  Google Scholar 

  35. A. Kumari, K. Kumari, F. Ahmed, A. Alshoaibi, P.A. Alvi, S. Dalela, M.M. Ahmad, R.N. Aljawfi, P. Dua, A. Vij, and S. Kumar, Influence of Sm doping on structural, ferroelectric, electrical, optical and magnetic properties of BaTiO3. Vacuum (2021). https://doi.org/10.1016/j.vacuum.2020.109872.

    Article  Google Scholar 

  36. K. Punia, G. Lal, S. Dalela, S.N. Dolia, P.A. Alvi, S.K. Barbar, K.B. Modi, and S. Kumar, A comprehensive study on the impact of Gd substitution on structural, optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159142.

    Article  Google Scholar 

  37. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, S. Dalela, S.K. Gupta, and P.A. Alvi, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. (2020). https://doi.org/10.1002/pc.25576.

    Article  Google Scholar 

  38. B. Roul, R. Pant, S. Chirakkara, G. Chandan, K.K. Nanda, and S.B. Krupanidhi, Enhanced UV photodetector response of ZnO/Si with AlN buffer layer. IEEE Trans. Electron Devices 64, 4161 (2017). https://doi.org/10.1109/TED.2017.2741971.

    Article  CAS  Google Scholar 

  39. G.M. Ali, and P. Chakrabarti, Fabrication and characterization of thin film ZnO Schottky contacts based UV photodetectors: a comparative study. J. Vac. Sci. Technol. B 2, 10 (2012). https://doi.org/10.1116/1.3701945.

    Article  CAS  Google Scholar 

  40. G.M. Ali, and P. Chakrabarti, Performance of ZnO-based ultraviolet photodetectors under varying thermal treatment. IEEE Photon. J. (2010). https://doi.org/10.1109/JPHOT.2010.2054070.

    Article  Google Scholar 

  41. G.M. Ali, and P. Chakrabarti, ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors. J. Phys. D (2010). https://doi.org/10.1088/0022-3727/43/41/415103.

    Article  Google Scholar 

  42. A. Echresh, C.O. Chey, M.Z. Shoushtari, V. Khranovskyy, O. Nur, and M. Willander, UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.01.155.

    Article  Google Scholar 

  43. M. Afsal, C.Y. Wang, L.W. Chu, H. Ouyang, and L.J. Chen, Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO 2 core-shell nanowires. J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm30514c.

    Article  Google Scholar 

  44. C.H. Hsiao, C.S. Huang, S.J. Young, S.J. Chang, J.J. Guo, C.W. Liu, and T.Y. Yang, Field-emission and photoelectrical characteristics of Ga-ZnO nanorods photodetector. IEEE Trans. Electron Devices (2013). https://doi.org/10.1109/TED.2013.2257790.

    Article  Google Scholar 

  45. Y. Luo, Z. Dong, Y. Chen, Y. Zhang, Y. Lu, T. Xia, L. Wang, S. Li, W. Zhang, W. Xiang, C. Shan, and H. Guo, Self-powered NiO@ZnO-nanowire-heterojunction ultraviolet micro-photodetectors. Opt. Mater. Express (2019). https://doi.org/10.1364/ome.9.002775.

    Article  Google Scholar 

  46. C.-C. Chou, L.-H. Shih, and S.-J. Chang, Characteristics of Ultraviolet Photodetector Based on Li-doped ZnO Nanorods. Sens. Mater. (2020). https://doi.org/10.18494/sam.2020.2814.

    Article  Google Scholar 

  47. S. Singh, S. Jit, and S.H. Park, Characterization of Ag/ZnO nanorod Schottky diode-based low-voltage ultraviolet photodetector. Nano (2017). https://doi.org/10.1142/S1793292017500631.

    Article  Google Scholar 

  48. Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao, and H. Zhang, Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet. Phys. B (2009). https://doi.org/10.1016/j.physb.2009.08.011.

    Article  Google Scholar 

Download references

Acknowledgments

Manipal University Jaipur, Rajasthan (Semiconductor Device Fabrication Lab) & MRC (Materials Research Centre), MNIT Jaipur, Rajasthan are acknowledged for the device growth & characterization facilities extended to the authors. The financial assistance under the Project Seed Grant No.- MUJ/REGR/1435/08 awarded by Manipal University Jaipur, Rajasthan is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, C.P., Singh, A.K., Birla, S. et al. Ultraviolet Light Detection Properties of ZnO/AlN/Si Heterojunction Diodes. J. Electron. Mater. 51, 1097–1105 (2022). https://doi.org/10.1007/s11664-021-09374-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09374-w

Keywords

Navigation