Skip to main content

Advertisement

Log in

Fabrication of Spike-Like Spherical Iron Manganite Nanoparticles for the Augmented Photocatalytic Degradation of Methylene Blue Dye

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, spike-like spherical iron manganite (FeMnO3) nanoparticles were synthesized by chemical coprecipitation using chloride precursors subjected to calcination at 600°C for 3 h. The as-synthesized nanostructures were elaborately characterized for structural, morphological, elemental composition, optical, surface area, and availability of functional groups using x-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDX), photoluminescence spectroscopy (PL), Brunauer–Emmett–Teller theory (BET), and Fourier-transform infrared spectroscopy (FTIR). XRD results showed a pure phase of FeMnO3 with a cubic structure. FESEM images show the spike-like spherical morphology of the synthesized materials indicating higher surface roughness of the particles. PL spectroscopy shows strong absorption in the visible region of the solar spectrum. The photocatalytic response of the spike-like iron manganite nanoparticles was excellent for the degradation of methylene blue and methylene orange dyes under visible light. Owing to higher crystallinity and fewer defects in FeMnO3, the heterostructures display nanoporous/mesoporous structures offering more active sites. A degradation efficiency of approximately 99% was observed within 180 min after light exposure. Iron manganite nanoparticles showed good stability and reusability up to three cycles. The facile preparation, environmentally favorable nature, and superb photocatalytic action of FeMnO3 validate it as a promising candidate for photocatalytic applications in the visible range of the light spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.M. Sajid, N.A. Shad, A.M. Afzal, Y. Javed, S.B. Khan, N. Amin, A. Shah, I. Yousaf, and H. Zhai, Generation of strong oxidizing radicals from plate-like morphology of BiVO4 for the fast degradation of crystal violet dye under visible light. Appl. Phys. A 126, 314 (2020).

    Article  CAS  Google Scholar 

  2. M.M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, Z. Zhang, and N. Amin, Study of the interfacial charge transfer in bismuth vanadate/reduce graphene oxide (BiVO4/rGO) composite and evaluation of its photocatalytic activity. Res. Chem. Intermed 46, 1201 (2020).

    Article  CAS  Google Scholar 

  3. M.M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, Z. Zhang, N. Amin, and H. Zhai, Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interface 19, 100502 (2020).

    Article  CAS  Google Scholar 

  4. F. Wang, and S. Hu, Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim. Acta 165, 1 (2009).

    Article  CAS  Google Scholar 

  5. A. Afzal, Y. Javed, S. Hussain, A. Ali, M. Yaqoob, and S. Mumtaz, Enhancement in photovoltaic properties of bismuth ferrite/zinc oxide heterostructure solar cell device with graphene/indium tin oxide hybrid electrodes. Ceram. Int. 46, 9161 (2020).

    Article  CAS  Google Scholar 

  6. J. Borcherding, J. Baltrusaitis, H. Chen, L. Stebounova, C.-M. Wu, G. Rubasinghege, I.A. Mudunkotuwa, J.C. Caraballo, J. Zabner, and V.H. Grassian, Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ. Sci. Nano 1, 123 (2014).

    Article  CAS  Google Scholar 

  7. K. Cao, H. Liu, X. Xu, Y. Wang, and L. Jiao, FeMnO3: a high-performance Li-ion battery anode material. Chem. Commun. 52, 11414 (2016).

    Article  CAS  Google Scholar 

  8. C. Doroftei, P.D. Popa, E. Rezlescu, and N. Rezlescu, Structural and catalytic characterization of nanostructured iron manganite. Compos. B Eng. 67, 179 (2014).

    Article  CAS  Google Scholar 

  9. M.H. Habibi, and V. Mosavi, Wet coprecipitation preparation of perovskite-type iron manganite nano powder pure phase using nitrate precursors: structural, opto-electronic, morphological and photocatalytic activity for degradation of Nile blue dye. J. Mater. Sci. Mater. Electron. 28, 10270 (2017).

    Article  CAS  Google Scholar 

  10. M.H. Habibi, and V. Mosavi, Urea combustion synthesis of nano-structure bimetallic perovskite FeMnO3 and mixed monometallic iron manganese oxides: effects of preparation parameters on structural, opto-electronic and photocatalytic activity for photo-degradation of Basic Blue 12. J. Mater. Sci. Mater. Electron. 28, 8473 (2017).

    Article  CAS  Google Scholar 

  11. S. Diodati, L. Nodari, M.M. Natile, A. Caneschi, C. de Julián Fernández, C. Hoffmann, S. Kaskel, A. Lieb, V. Di Noto, and S. Mascotto, Coprecipitation of oxalates: an easy and reproducible wet-chemistry synthesis route for transition-metal ferrites. Eur. J. Inorg. Chem. 5, 875 (2014).

    Article  Google Scholar 

  12. G.-Y. Zhang, Y.-Q. Sun, D.-Z. Gao, and Y.-Y. Xu, Quasi-cube ZnFe2O4 nanocrystals: hydrothermal synthesis and photocatalytic activity with TiO2 (Degussa P25) as nanocomposite. Mater. Res. Bull. 45, 755 (2010).

    Article  CAS  Google Scholar 

  13. K.G. Pavithra, and V. Jaikumar, Removal of colorants from wastewater: a review on sources and treatment strategies. J. Ind. Eng. Chem. 75, 1 (2019).

    Article  CAS  Google Scholar 

  14. M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface sci. 166, 36 (2011).

    Article  CAS  Google Scholar 

  15. F.S. Farahani, B. Mecheri, M.R. Majidi, E. Placidi, and A. D’Epifanio, Carbon-supported Fe/Mn-based perovskite-type oxides boost oxygen reduction in bioelectrochemical systems. Carbon 145, 716 (2019).

    Article  Google Scholar 

  16. K. Maaz, A. Mumtaz, S. Hasanain, and M. Bertino, Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J. Magn. Magn. Mater. 322, 2199 (2010).

    Article  CAS  Google Scholar 

  17. M.F. Casula, E. Conca, I. Bakaimi, A. Sathya, M.E. Materia, A. Casu, A. Falqui, E. Sogne, T. Pellegrino, and A.G. Kanaras, Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Phys. Chem. Chem. Phys. 18, 16848 (2016).

    Article  CAS  Google Scholar 

  18. Y. Li, E. Boone, and M.A. El-Sayed, Size effects of PVP−Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18, 4921 (2002).

    Article  CAS  Google Scholar 

  19. Z.Z. Vasiljevic, M.P. Dojcinovic, J.B. Krstic, V. Ribic, N.B. Tadic, M. Ognjanovic, S. Auger, J. Vidic, and M.V. Nikolic, Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis. RSC Adv. 10, 13879 (2020).

    Article  CAS  Google Scholar 

  20. M. Li, W. Xu, W. Wang, Y. Liu, B. Cui, and X. Guo, Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sour. 248, 465 (2014).

    Article  CAS  Google Scholar 

  21. B. Saravanakumar, S. Ramachandran, G. Ravi, V. Ganesh, R.K. Guduru, and R. Yuvakkumar, Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications. Mater. Res. Exp. 5, 015504 (2018).

    Article  Google Scholar 

  22. L. Leontie, C. Doroftei, and A. Carlescu, Nanocrystalline iron manganite prepared by sol–gel self-combustion method for sensor applications. Appl. Phys. A 124, 750 (2018).

    Article  CAS  Google Scholar 

  23. M.V. Nikolic, M.D. Lukovic, and N.J. Labus, Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3). J. Mater. Sci. Mater. Electron. 30, 12399 (2019).

    Article  CAS  Google Scholar 

  24. S. Rayaprol, and S. Kaushik, Magnetic and magnetocaloric properties of FeMnO3. Ceram. Int. 41, 9567 (2015).

    Article  CAS  Google Scholar 

  25. I. Malaescu, A. Lungu, C. Marin, P. Vlazan, P. Sfirloaga, and G. Turi, Experimental investigations of the structural transformations induced by the heat treatment in manganese ferrite synthesized by ultrasonic assisted co-precipitation method. Ceram. Int. 42, 16744 (2016).

    Article  CAS  Google Scholar 

  26. Y. Niu, M. Yu, A. Meka, Y. Liu, J. Zhang, Y. Yang, and C. Yu, Understanding the contribution of surface roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein delivery. J. Mater. Chem. B 4, 212 (2016).

    Article  CAS  Google Scholar 

  27. R. Suresh, R. Udayabhaskar, C. Sandoval, E. Ramírez, R.V. Mangalaraja, H.D. Mansilla, D. Contreras, and J. Yáñez, Effect of reduced graphene oxide on the structural, optical, adsorption and photocatalytic properties of iron oxide nanoparticles. New J. Chem. 42, 8485 (2018).

    Article  CAS  Google Scholar 

  28. C. Barglik-Chory, C. Remenyi, C. Dem, M. Schmitt, W. Kiefer, C. Gould, C. Rüster, G. Schmidt, D.M. Hofmann, and D. Pfisterer, Synthesis and characterization of manganese-doped CdS nanoparticles. Phys. Chem. Chem. Phys. 5, 1639 (2003).

    Article  CAS  Google Scholar 

  29. L.S. Lobo, and A. Rubankumar, Investigation on structural and electrical properties of FeMnO3 synthesized by sol-gel method. Ionics 25, 1341 (2019).

    Article  CAS  Google Scholar 

  30. C.H. Nguyen, C.-C. Fu, and R.-S. Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J. Clean. Prod. 202, 413 (2018).

    Article  CAS  Google Scholar 

  31. K. Xiong, K. Wang, L. Chen, X. Wang, Q. Fan, J. Courtois, Y. Liu, X. Tuo, and M. Yan, Heterostructured ZnFe2O4/Fe2TiO5/TiO2 composite nanotube arrays with an improved photocatalysis degradation efficiency under simulated sunlight irradiation. Nano-Micro Lett. 10, 17 (2018).

    Article  Google Scholar 

  32. D. Zhu, and Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ. Nanotech. Monit. Manag. 12, 100255 (2019).

    Google Scholar 

  33. S. Alkaykh, A. Mbarek, and E.E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6, e03663 (2020).

    Article  Google Scholar 

  34. S. Moosavi, R.Y.M. Li, C.W. Lai, Y. Yusof, S. Gan, O. Akbarzadeh, Z.Z. Chowhury, X.-G. Yue, and M.R. Johan, Methylene blue dye photocatalytic degradation over synthesised Fe3O4/AC/TiO2 nano-catalyst: degradation and reusability studies. Nanomaterials 10, 2360 (2020).

    Article  CAS  Google Scholar 

  35. A.A. Ullah, A.F. Kibria, M. Akter, M. Khan, A. Tareq, and S.H. Firoz, Oxidative degradation of methylene blue using Mn3O4 nanoparticles. Water Conserv. Sci. Eng. 1, 249 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Javed.

Ethics declarations

Conflict of interest

The authors have no competing conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shad, N.A., Jameel, A., Sajid, M.M. et al. Fabrication of Spike-Like Spherical Iron Manganite Nanoparticles for the Augmented Photocatalytic Degradation of Methylene Blue Dye. J. Electron. Mater. 51, 900–909 (2022). https://doi.org/10.1007/s11664-021-09371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09371-z

Keywords

Navigation