Skip to main content
Log in

Stability and Anisotropic Elastic Properties of a Hexagonal δ-WN Compound

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we have examined the structural, phonon and anisotropic elastic properties of a hexagonal δ-WN compound via density functional theory. The obtained structural parameters and mechanical properties are in agreement with the other experimental and theoretical results. The present phonon dispersion curve and elastic constants indicate that the δ-WN compound is both mechanically and dynamically stable. The predicted elastic modulus shows that this compound possesses a high bulk modulus, shear modulus and Young’s modulus. The tabulated B/G and Poisson’s ratio have predicted that δ-WN has ductile behavior. According to the calculated minimum thermal conductivity, the hexagonal δ-WN compound can be used as thermal insulating material. Moreover, elastic anisotropy behavior has been analyzed with the different anisotropic indexes. The anisotropic elastic properties have been reported and discussed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ihara, Y. Kimura, K. Senzaki, H. Kezuka, and M. Hirabayashi, Phys. Rev. B 31, 3177 (1985).

    Article  CAS  Google Scholar 

  2. H. Wang, Q. Li, Y.W. Li, Y. Xu, T. Cui, A.R. Oganov, and Y.M. Ma, Phys. Rev. B 79, 132109 (2009).

    Article  Google Scholar 

  3. E. Soignard, O. Shebanova, and P.F. McMillan, Phys. Rev. B 75, 014104 (2007).

    Article  Google Scholar 

  4. Q. Li, L. Sha, C. Zhu, and Y. Yao, Europhys. Lett. 118, 46001 (2017).

    Article  Google Scholar 

  5. Y.O. Ciftci, M. Ozayman, G. Surucu, K. Colakoglu, and E. Deligoz, Solid State Sci. 14, 401 (2012).

    Article  CAS  Google Scholar 

  6. M.W. Williams, K.M. Ralls, and M.R. Pickus, J. Phys. Chem. Solids 28, 333 (1967).

    Article  CAS  Google Scholar 

  7. A.B. Gordienko, and Yu.N. Zhuravlev, J. Struct. Chem. 51, 401 (2010).

    Article  CAS  Google Scholar 

  8. E. Ateser, H. Ozisik, K. Colakoglu, and E. Deligoz, Comp. Mater. Sci. 50, 3208 (2011).

    Article  CAS  Google Scholar 

  9. E. Deligoz, K. Colakoglu, and Y.O. Ciftci, Chin. Phys. Lett. 25, 2154 (2008).

    Article  CAS  Google Scholar 

  10. G. Hägg, and Z. Phys, Chem. B 7, 339–362 (1930).

    Google Scholar 

  11. N. Schönberg, W.G. Overend, A. Munthe-Kaas, and N.A. Sörensen, Acta Chem. Scand. 8, 204 (1954).

    Article  Google Scholar 

  12. S. Wang, X. Yu, Z. Lin, R. Zhang, D. He, J. Qin, J. Zhu, J. Han, L. Wang, H. Mao, J. Zhang, and Y. Zhao, Chem. Mater. 24, 3023 (2012).

    Article  CAS  Google Scholar 

  13. F. Kawamura, H. Yusa, and T. Taniguchi, J Am Ceram Soc. 101, 949 (2018).

    Article  CAS  Google Scholar 

  14. C. Wang, Q. Tao, S. Dong, X. Wang, and P. Zhu, Inorg. Chem. 56, 3970 (2017).

    Article  CAS  Google Scholar 

  15. J.C. Wei, H.C. Chen, W. Huang, and J. Long, Mater. Sci. Semicond. Process. 27, 883–890 (2014).

    Article  CAS  Google Scholar 

  16. Z. Zhao, K. Bao, D. Duan, F. Tian, Y. Huang, H. Yu, Y. Liu, B. Liu, and T. Cui, Phys. Chem. Chem. Phys. 17, 13397–13402 (2015).

    Article  CAS  Google Scholar 

  17. S.-D. Guo, and P. Chen, J. Chem. Phys. 148, 144706 (2018).

    Article  Google Scholar 

  18. D.V. Suetin, I.R. Shein, and A.L. Ivanovskii, Phys. Stat. Sol. (b) 245, 1590–1597 (2008).

    Article  CAS  Google Scholar 

  19. G. Kresse, and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  20. G. Kresse, and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  22. P.E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  CAS  Google Scholar 

  23. H.J. Monkhorst, and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  24. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).

    Article  Google Scholar 

  25. P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

    Article  CAS  Google Scholar 

  26. Y. Le Page, and P. Saxe, Phys. Rev. B 63, 174103 (2001).

    Article  Google Scholar 

  27. Y. Le Page, and P. Saxe, Phys. Rev. B 65, 104104 (2002).

    Article  Google Scholar 

  28. MedeA version 2.2; MedeA is a registered trademark of Materials Design, Inc., San Diego, USA.

  29. M. Born, Proc. Camb. Philos. Soc. 36, 160 (1940).

    Article  CAS  Google Scholar 

  30. E. Deligoz, K. Colakoglu, and Y.O. Ciftci, J. Mater. Sci. 45, 3720 (2010).

    Article  CAS  Google Scholar 

  31. E. Deligoz, H.B. Ozisik, and H. Ozisik, Solid State Sci. 96, 105942 (2019).

    Article  CAS  Google Scholar 

  32. W. Voigt, Lehrbuch der Kristallpysik (Leipzig: Taubner, 1928), p. 29.

    Google Scholar 

  33. A. Reuss, and Z. Angew, Math Mech. 9, 49 (1929).

    CAS  Google Scholar 

  34. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Article  Google Scholar 

  35. H. Ozisik, E. Deligoz, K. Colakoglu, and H.B. Ozisik, Intermetallics 50, 1 (2014).

    Article  CAS  Google Scholar 

  36. S.F. Pugh, Lond. Edinburgh, Dublin Philos. Mag. J. Sci. 45, 367823–367843 (1954).

    Google Scholar 

  37. J.J. Lewandowski, W.H. Wang, and A.L. Greer, Philos. Mag. Lett. 85, 77 (2005).

    Article  CAS  Google Scholar 

  38. I. Johnston, G. Keeler, R. Rollins, and S. Spicklemire, Solid State Physics Simulations (Consortium for Upper Level Physics Software) (New York: Wiley, 1996).

    Google Scholar 

  39. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  CAS  Google Scholar 

  40. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants, and Their Measurements (New York: McGraw-Hill Companies, 1973).

    Google Scholar 

  41. X.-Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

    Article  CAS  Google Scholar 

  42. A.G. Kvashnin, Z. Allahyari, and A.R. Oganov, J. Appl. Phys. 126, 040901 (2019).

    Article  Google Scholar 

  43. J. Chang, X. Zhou, K. Liu, N. Ge, and R. Soc, Open Sci. 5, 180701 (2018).

    Google Scholar 

  44. N. Miao, B. Sa, J. Zhou, and Z. Sun, Comput. Mater. Sci. 50, 1559–1566 (2011).

    Article  CAS  Google Scholar 

  45. M. Zeng, R. Wang, B. Tang, L. Peng, and W. Ding, Model. Simul Mater. Sci. 20, 035018 (2012).

    Article  Google Scholar 

  46. S.I. Ranganathan, and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Article  Google Scholar 

  47. Y. Wen, X. Zeng, Z. Hu, R. Peng, J. Sun, and L. Song, Intermetallics 101, 72 (2018).

    Article  CAS  Google Scholar 

  48. R. Gaillac, P. Pullumbi, and F.X. Coudert, J. Phys. Conden. Matter 28, 275201 (2016).

    Article  Google Scholar 

  49. D.R. Clarke, Surf. Coat. Technol. 163–164, 67 (2003).

    Article  Google Scholar 

  50. D.R. Clarke, and C.G. Levi, Annu. Rev. Mater. Res. 33, 383 (2003).

    Article  CAS  Google Scholar 

  51. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).

    Article  CAS  Google Scholar 

  52. Y.H. Duan, Y. Sun, and L. Lu, Comput. Mater. Sci. 68, 229 (2013).

    Article  CAS  Google Scholar 

  53. E. Deligoz, and H. Ozisik, Philos. Mag. 95, 2294 (2015).

    Article  CAS  Google Scholar 

  54. L. Bao, D. Qu, Z. Kong, and Y. Duan, Solid State Sci. 98, 106027 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The numerical calculations reported in this study were performed at High Performance Computers (HPC) at Aksaray University, Science and Technology Application and Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Deligoz.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozisik, H.B., Deligoz, E. & Ozisik, H. Stability and Anisotropic Elastic Properties of a Hexagonal δ-WN Compound. J. Electron. Mater. 51, 412–419 (2022). https://doi.org/10.1007/s11664-021-09307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09307-7

Keywords

Navigation