Skip to main content

Advertisement

Log in

Enhanced Electrochemical Performance of Porous Carbon Derived from Cornstalks for Supercapacitor Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Biomass is a reliable and sustainable source of energy and chemicals. It is important to find simple and green solutions to turn the large amount of available biomass into materials with high added value. Porous carbon with a unique microporous structure has been prepared from cornstalk waste by simple carbonization and activation processes, and used as an electrode material for supercapacitors. The obtained porous carbon with high specific surface area (408 m2/g) and appropriate pore size distribution (1 nm to 2 nm) provided multiple energy storage sites and ionic diffusion paths, effectively improving the electrochemical characteristics. In a symmetric supercapacitor system, the produced electrode exhibited high specific capacitance of 125 F/g and outstanding cycling stability with capacitance retention of 88% after 2000 cycles in aqueous electrolyte. Moreover, a high energy density of 15.3 Wh/kg and a specific capacitance of 62 F/g were achieved in organic electrolyte. This approach could provide a novel route for high-performance energy storage materials derived from biomass waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Global bioenergy statistics, (2019). http://www.worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_HQ.pdf. Accessed 28 June 2021.

  2. Potential Contribution of Bioenergy to the World’s Future Energy Demand. IEA BIOENERGY (2007). https://www.ieabioenergy.com/wp-content/uploads/2013/10/Potential-Contribution-of-Bioenergy-to-the-Worlds-Future-Energy-Demand.pdf. Accessed 28 June 2021.

  3. GIZ-GDE/MOIT Renewable Energy Support Project (In Vietnamese). http://gizenergy.org.vn/media/app/media/Bao%20cao%20nghien%20cuu/Handbook_on_Bioenergy_-_VN.pdf. Accessed 28 June 2021.

  4. Biomass energy in Vietnam -PetroTimes (in Vietnamese). https://www.pvpower.vn/nang-luong-sinh-khoi-o-viet-nam-van-chi-la-tiem-nang/. Accessed 28 June 2021.

  5. M. Jensen, R. Keding, T. Höche, and Y. Yue, J. Am. Chem. Soc. 131, 2717 (2009). https://doi.org/10.1021/ja808847y.

    Article  CAS  Google Scholar 

  6. Y. Xia, W. Zhang, Z. Xiao, H. Huang, H. Zeng, X. Chen, F. Chen, Y. Gan, and X. Tao, J. Mater. Chem. 22, 9209 (2012). https://doi.org/10.1039/C2JM16935E.

    Article  CAS  Google Scholar 

  7. J. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Pang, L. Yue, X. Wang, J. Yao, and G. Cui, ACS Appl. Mater. Interfaces 5, 128 (2013). https://doi.org/10.1021/am302290n.

    Article  CAS  Google Scholar 

  8. Y. Xia, Z. Xiao, X. Dou, H. Huang, X. Lu, R. Yan, Y. Gan, W. Zhu, J. Tu, W. Zhang, and X. Tao, ACS Nano 7, 7083 (2013). https://doi.org/10.1021/nn4023894.

    Article  CAS  Google Scholar 

  9. J. Shin, A. Lauve, M. Carey, E. Bukovsky, J.F. Ranville, R.J. Evans, and A.M. Herring, Biomass Bioenergy 32, 267 (2008). https://doi.org/10.1016/j.biombioe.2007.09.007.

    Article  CAS  Google Scholar 

  10. L. Yu, Z.Y. Fu, and B.L. Su, Adv. Funct. Mater. 22, 4634 (2012). https://doi.org/10.1002/adfm.201200591.

    Article  CAS  Google Scholar 

  11. N. Liu, K. Huo, M.T. McDowell, J. Zhao, and Y. Cui, Sci. Rep. 3, 1919 (2013). https://doi.org/10.1038/srep01919.

    Article  Google Scholar 

  12. S. Zhang, M. Zheng, Z. Lin, N. Li, Y. Liu, B. Zhao, H. Pang, J. Cao, P. Hea, and Y. Shi, J. Mater. Chem. A 2, 15889 (2014). https://doi.org/10.1039/C4TA03503H.

    Article  CAS  Google Scholar 

  13. J. Ding, H. Wang, Z. Lia, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, and D. Mitlin, Energy Environ. Sci. 8, 941 (2015). https://doi.org/10.1039/C4EE02986K.

    Article  CAS  Google Scholar 

  14. J. Li, and Q. Wu, New J. Chem. 39, 3859 (2015). https://doi.org/10.1039/C4NJ01853B.

    Article  CAS  Google Scholar 

  15. P. Simon, and Y. Gogotsi, Nat. Mater. 7, 845 (2008). https://doi.org/10.1038/nmat2297.

    Article  CAS  Google Scholar 

  16. C. Liu, X. Wu, and B. Wang, Chem. Eng. J. 392, 123651 (2019). https://doi.org/10.1016/j.cej.2019.123651.

    Article  CAS  Google Scholar 

  17. C. Liu, X. Wu, and H. Xia, CrystEngComm 20, 4735 (2018). https://doi.org/10.1039/C8CE00948A.

    Article  CAS  Google Scholar 

  18. H. Liu, M. Dai, D. Zhao, X. Wu, B. Wang, and A.C.S. Appl, Energy Mater. 3, 7004 (2020). https://doi.org/10.1021/acsaem.0c01055.

    Article  CAS  Google Scholar 

  19. K. Sharma, A. Arora, and S.K. Tripathi, J. Energy Storage 21, 801 (2019). https://doi.org/10.1016/j.est.2019.01.010.

    Article  CAS  Google Scholar 

  20. H. Liu, D. Zhao, Y. Liu, Y. Tong, X. Wu, and G. Shen, Sci. China Mater. 64, 581 (2021). https://doi.org/10.1007/s40843-020-1442-3.

    Article  CAS  Google Scholar 

  21. M. Dai, H. Liu, D. Zhao, X. Zhu, A. Umar, H. Algarni, X. Wu, and C.S. Appl, Nano Mater. 4, 5461 (2021). https://doi.org/10.1021/acsanm.1c00825.

    Article  CAS  Google Scholar 

  22. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, J. Mater. Chem. A 5, 12653 (2017). https://doi.org/10.1039/C7TA00863E.

    Article  CAS  Google Scholar 

  23. K. Poonam, A. Sharma, S.K. Arora, and J. Tripathi, Energy Storage 21, 801 (2019). https://doi.org/10.1016/j.est.2019.01.010.

    Article  Google Scholar 

  24. L.L. Zhang, and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009). https://doi.org/10.1039/B813846J.

    Article  CAS  Google Scholar 

  25. T. Zhang, F. Zhang, L. Zhang, Y. Lu, Y. Zhang, X. Yang, Y. Ma, and Y. Huang, Carbon 92, 106 (2015). https://doi.org/10.1016/j.carbon.2015.03.032.

    Article  CAS  Google Scholar 

  26. Y. Ding, T. Wang, D. Dong, and Y. Zhang, Front. Energy Res. (2020). https://doi.org/10.3389/fenrg.2019.00159.

    Article  Google Scholar 

  27. M. Demir, Z. Kahveci, B. Aksoy, N.K.R. Palapati, A. Subramanian, H.T. Cullinan, H.M. El-Kaderi, C.T. Harris, and R.B. Gupta, Ind. Eng. Chem. Res. 54, 10731 (2015). https://doi.org/10.1021/acs.iecr.5b02614.

    Article  CAS  Google Scholar 

  28. E. Pusceddu, A. Montanaro, G. Fioravanti, S.F. Santilli, P.U. Foscolo, I. Criscuoli, A. Raschi, and F. Miglietta, Int. J. N. Technol. Res. 3, 39 (2017).

    Google Scholar 

  29. B. Armynah, A.Z. Djafar, W.H. Piarah, and D. Tahir, J. Phys. Conf. Ser. 979, 012038 (2018). https://doi.org/10.1088/1742-6596/979/1/012038.

    Article  CAS  Google Scholar 

  30. S.Y. Yang, K.H. Chang, Y.L. Huang, Y.F. Lee, H.W. Tien, S.M. Li, Y.H. Lee, C.H. Liu, C.C.M. Ma, and C.C. Hu, Electrochem. Commun. 14, 39 (2012). https://doi.org/10.1016/j.elecom.2011.10.028.

    Article  CAS  Google Scholar 

  31. T. Tay, S. Ucar, and S. Karagöz, J. Hazard. Mater. 165, 481 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.011.

    Article  CAS  Google Scholar 

  32. W.H. Qu, Y.Y. Xu, A.H. Lu, X.Q. Zhang, and W.-C. Li, Bioresour. Biotechnol. 189, 285 (2015). https://doi.org/10.1016/j.biortech.2015.04.005.

    Article  CAS  Google Scholar 

  33. K. Ojha, B. Kumar, and A.K. Ganguli, J. Chem. Sci. 129, 397 (2017). https://doi.org/10.1007/s12039-017-1248-8.

    Article  CAS  Google Scholar 

  34. X. Zheng, M. Chen, Y. Ma, X. Dong, F. Xi, and J. Liu, J. Solid State Electrochem. 21, 3449 (2017). https://doi.org/10.1007/s10008-017-3689-x.

    Article  CAS  Google Scholar 

  35. V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, and B. Wei, J. Phys. Chem. C 111, 7527 (2007). https://doi.org/10.1021/jp067009t.

    Article  CAS  Google Scholar 

  36. S.E.M. Pourhosseini, O. Norouzi, P. Salimi, H.R. Naderi, and A.C.S. Sust, Chem. Eng. 6, 4746 (2018). https://doi.org/10.1021/acssuschemeng.7b03871.

    Article  CAS  Google Scholar 

  37. W. Zhong-Yu, F. Lei, T. You-Rong, W. Wei, W. Xing-Cai, and Z. Jian-Wei, Chin. J. Inorg. Chem. 34, 1249 (2018).

    Google Scholar 

  38. H. Jin, J. Hu, S. Wu, X. Wang, H. Zhang, H. Xu, and K. Lian, J. Power Sources 384, 270 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.089.

    Article  CAS  Google Scholar 

  39. H. Xuan, G. Lin, F. Wang, J. Liu, X. Dong, and F. Xi, J. Solid State Electrochem. 21, 2241–2249 (2017). https://doi.org/10.1007/s10008-017-3562-y.

    Article  CAS  Google Scholar 

  40. F.L. Braghiroli, A. Cuña, E.L. da Silva, G. Amaral-Labat, G.F.B. Lenze Silva, H. Bouafif, and A. Koubaa, J. Porous Mater. 27, 537 (2020). https://doi.org/10.1007/s10934-019-00823-w.

    Article  CAS  Google Scholar 

  41. J. Zhou, M. Wang, and X. Li, J. Porous Mater. 26, 99 (2019). https://doi.org/10.1007/s10934-018-0622-3.

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.20.27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Trinh Tran.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.H., Ngo, V.H., Nguyen, M.T. et al. Enhanced Electrochemical Performance of Porous Carbon Derived from Cornstalks for Supercapacitor Applications. J. Electron. Mater. 50, 6854–6861 (2021). https://doi.org/10.1007/s11664-021-09249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09249-0

Keywords

Navigation