Skip to main content
Log in

Metamaterial-Inspired Complementary Split Ring Resonator Sensor and Second-Order Approximation for Dielectric Characterization of Fluid

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A metamaterial-based complementary split ring resonator (CSRR) structure is used to develop a sensor for dielectric characterization of fluids. The fluid present in the vertical column interacts with the fields around the CSRR causing a shift in the transmission coefficient curve (\(S_{21}\)). An empirical relationship can be established between the dielectric properties and the resonance frequency and Q-factor. This relationship is used for the dielectric characterization of the fluid. A second-order polynomial function is employed for a better curve fitting of the data to achieve higher accuracy in the prediction of complex permittivity (\( \varepsilon ' \) and \( \varepsilon '' \)). Multi-variate polynomial regression is used to determine the coefficients of the polynomial function. The proposed sensor predicts the permittivity of the sample with high accuracy. The design is very simple and the sample can be easily changed by replacing the glass tube. The sensor has very high sensitivity and requires a very little volume of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in GitHub at https://github.com/msingh189/Fiiting_polynomial_surface.

References

  1. R. Joffe, E.O. Kamenetskii, R. Shavit, J. Appl. Phys. 1130(6), 0063912 (2013)

    Article  Google Scholar 

  2. J. Bourqui, E.C. Fear, Shielded uwb sensor for biomedical applications. IEEE Antennas Wirel. Propag. Lett. 11, 1614 (2012)

    Article  Google Scholar 

  3. J. H. Goh, A. Mason, A. I. Al-Shamma’a, S. R. Wylie, M. Field, P. Browning. Lactate detection using a microwave cavity sensor for biomedical applications. In 2011 Fifth International Conference on Sensing Technology, pages 436–441, 2011.

  4. M. Birkholz, K.-E. Ehwald, T. Basmer, P. Kulse, C. Reich, J. Drews, D. Genschow, U. Haak, S. Marschmeyer, E. Matthus, K. Schulz, D. Wolansky, W. Winkler, T. Guschauski, R. Ehwald, J. Appl. Phys. 1130(24), 244904 (2013)

    Article  Google Scholar 

  5. C. Jang, J. Park, H. Lee, G. Yun, J. Yook, IEEE Sens. J. 200(15), 8520– (2020). https://doi.org/10.1109/JSEN.2020.2984779

    Article  Google Scholar 

  6. A.J. Cole, P.R. Young, IEEE Sens. J. 180(1), 149 (2018)

    Article  Google Scholar 

  7. A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, D. Abbott, IEEE Sens. J. 140(5), 1345 (2014)

    Article  Google Scholar 

  8. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, D. Abbott, Sens. Actuators A Phys. 189, 233 (2013)

    Article  CAS  Google Scholar 

  9. S. Kayal, T. Shaw, D. Mitra, Appl. Phys. A 1260(1), 13 (2019)

    Article  Google Scholar 

  10. E.L. Chuma, Y. Iano, G. Fontgalland, L.L. Bravo Roger, IEEE Sens. J. 180(24), 9978 (2018)

    Article  Google Scholar 

  11. K.Y. Yogita, K. Awasthi, J. Electr. Mater. 490(1), 385 (2020)

    Google Scholar 

  12. M.A. Tümkaya, F. Dinçer, M. Karaaslan, C. Sabah, J. Electr. Mater. 460(8), 4955 (2017)

    Article  Google Scholar 

  13. E.L. Chuma, Y. Iano, G. Fontgalland, L.L.B. Roger, H. Loschi, Sens. Actuators A Phys. 312, 112112 (2020)

    Article  CAS  Google Scholar 

  14. X. Zhang, C. Ruan, K. Chen, Sensors (2019). https://doi.org/10.3390/s19040787

    Article  Google Scholar 

  15. X. Bao, I. Ocket, J. Bao, Z. Liu, B. Puers, D.M.M. Schreurs, B. Nauwelaers, IEEE Trans. Microw. Theory Tech. 670(7), 2674 (2019). https://doi.org/10.1109/TMTT.2019.2916871

    Article  Google Scholar 

  16. O. Altintaş, M. Aksoy, E. Ünal, M. Karaaslan, J. Electrochem. Soc. 1660(6), B482 (2019)

    Article  Google Scholar 

  17. O. Altıntaş, M. Aksoy, E. Ünal, Phys. E Low-Dimens. Syst. Nanostruct. 116, 113734 (2020)

    Article  Google Scholar 

  18. S. Trabelsi, S.O. Nelson, IEEE Instrum. Measurement Mag. 190(1), 36 (2016)

    Article  Google Scholar 

  19. M.S. Venkatesh, G.S.V. Raghavan, Biosyst. Eng. 880(1), 1 (2004)

    Article  Google Scholar 

  20. M.F. Mabrook, M.C. Petty, Sens. Actuators B Chem. 960(1), 215 (2003)

    Article  Google Scholar 

  21. M.H. Zarifi, A. Sohrabi, P.M. Shaibani, M. Daneshmand, T. Thundat, IEEE Sens. J. 150(1), 248 (2015)

    Article  Google Scholar 

  22. R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz, H.V. Demir, Appl. Phys. Lett. 950(1), 011106 (2009)

    Article  Google Scholar 

  23. C. Mandel, M. Schüßler, R. Jakoby, SENSORS (2011). https://doi.org/10.1109/ICSENS.2011.6126942

    Article  Google Scholar 

  24. C. Mandel, B. Kubina, M. Schüßler, R. Jakoby. Passive chipless wireless sensor for two-dimensional displacement measurement. In 2011 41st European Microwave Conference, pages 79–82. https://doi.org/10.23919/EuMC.2011.6101801. (2011).

  25. Z. Zhang, X. Liao, IEEE Sens. J. 150(4), 2019 (2015). https://doi.org/10.1109/JSEN.2014.2382719

    Article  Google Scholar 

  26. K. Lee, J. Kim, C. Cha. Microwave-based wireless power transfer using beam scanning for wireless sensors. In IEEE EUROCON 2019 -18th International Conference on Smart Technologies, pages 1–5, 2019. 10.1109/EUROCON.2019.8861838.

  27. M. D’Asaro, D. Sheen, J. Lang. A fully-shielded flexible and stretchable microwave transmission-line tactile pressure sensor. In 2016 IEEE SENSORS, pages 1–3, 2016. 10.1109/ICSENS.2016.7808912.

  28. H. Nakano. Categorization of Natural Materials and Metamaterials, pages 1–10. (2016).

  29. R. k. Baee, G. Dadashzadeh, F. G. Kharakhili. Using of csrr and its equivalent circuit model in size reduction of microstrip antenna. In 2007 Asia-Pacific Microwave Conference, pages 1–4, (2007).

  30. J. Bonache, M. Gil, I. Gil, J. Garcia-Garcia, F. Martin, IEEE Microwave Wirel. Compon. Lett. 160(10), 543 (2006)

    Article  Google Scholar 

  31. J.-Z. Bao, M.L. Swicord, C.C. Davis, J. Chem. Phys. 1040(12), 4441 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Pseudo Code for Multi-Variate Polynomial Regression

Appendix A: Pseudo Code for Multi-Variate Polynomial Regression

  1. 1.

    Import Libraries [For python Pandas Numpy sklearn]

  2. 2.

    Read data from csv (comma separated values) file and convert it into a dataframe (say df)

    df = pandas . read_csv ("filename_with_extension")

  3. 3.

    There are 2 training data columns of 2 target columns to be predicted. Extract only required columns from dataframe.

    $$ \begin{gathered} {\text{train \_features = ['column1', 'column2']}} \hfill \\ {\text{target\_column\_1 = df ['target1']}} \hfill \\ {\text{target\_column\_2 = df ['target2']}} \hfill \\ {\text{data = df ['train\_features']}} \hfill \\ \end{gathered} $$
  4. 4.

    Take the input of two train_features values (f and Q) to predict target values (\( \varepsilon ' \) and \( \varepsilon '' \))

    $$ \begin{gathered} {\text{f = float (input (Enter the value of first input feature))}} \hfill \\ {\text{Q = float (input (Enter the value of second input feature))}} \hfill \\ \end{gathered} $$
  5. 5.

    Generate polynomial and interaction features. The degree-2 polynomial features are [1, a, b, \( a^{2} \), ab, \( b^{2} \)]. [Use PolynomialFeatures class from sklearn.preprocessing library for python]

    $$ \begin{gathered} {\text{poly = sklearn}}{\text{.preprocessing}}{\text{.Polynomial Features (degree = DEGREE OF POLYNOMIAL}} \hfill \\ \quad \quad \quad {\text{ YOU WANT TO CREATE)}} \hfill \\ {\text{poly}}\_{\text{variables = poly}}.{\text{fit}}\_{\text{transform}}({\text{arrayofvaluesofinputfeatures}}) \hfill \\ \end{gathered} $$
  6. 6.

    Repeat the above process for test values for which we are predicting output values:

    $$ {\text{test\_variables = poly}}{\text{.fit\_transform (an array}}\;{\text{of input values f and Q)}} $$
  7. 7.

    To create model, use simple linear regression. [Use LinearRegression from library sklearn.linear_model for python]

    $$ \begin{gathered} {\text{regression = sklearn}}{\text{.linear\_model}}{\text{.LinearRegression ( )}} \hfill \\ {\text{model = regression}}{\text{.fit(poly\_variables,target\_column\_1 )}} \hfill \\ \end{gathered} $$
  8. 8.

    Obtain the coefficients and intercept of fitted equation.

    $$ \begin{gathered} {\text{print}}({\text{coefficients}}\;{\text{of}}\;{\text{fitted}}/{\text{learned}}\;{\text{equation}}) \hfill \\ {\text{print}}({\text{intercept}}\;{\text{of}}\;{\text{fitted}}/{\text{learned equation}}) \hfill \\ \end{gathered} $$
  9. 9.

    Predict the model. [Use model.predict() for python]

    $$ \begin{gathered} {\text{prediction = model}}{\text{.predict(test\_variables)}} \hfill \\ {\text{print(prediction)}} \hfill \\ \end{gathered} $$
  10. 10.

    Repeat 7, 8 and 9 for second target column to predict another target value. We have to use 2 separate models for training, as it is multi-target regression problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rajawat, M.S., Mahto, S.K. et al. Metamaterial-Inspired Complementary Split Ring Resonator Sensor and Second-Order Approximation for Dielectric Characterization of Fluid. J. Electron. Mater. 50, 5925–5932 (2021). https://doi.org/10.1007/s11664-021-09099-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09099-w

Keywords

Navigation