Skip to main content
Log in

Comparative Apex Electrostatics of Atom Probe Tomography Specimens

  • Topical Collection: 62nd Electronic Materials Conference 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Rigorous electrostatic modeling of the specimen electrode environment is required to better understand the fundamental processes of atom probe tomography (APT) and guide the analysis of APT data. We have developed a simulation tool that self-consistently solves the nonlinear electrostatic Poisson equation along with the mobile charge carrier concentrations and provides a detailed picture of the electrostatic environment of APT specimen tips. We consider cases of metals, semiconductors, and dielectrics. Traditionally in APT, and regardless of specimen composition, the apex electric field \(E_\mathrm{apex}\) has been approximated by the relation \(E_\mathrm{apex} = SV / (kr)\), which was originally derived for sharp, metallic conductors; we refer to this equation as the “K-factor approximation”. Here, SV is tip-electrode bias, r is the radius of curvature of the tip apex, and k is a dimensionless fitting parameter with \(1.5< k < 8.5\). As expected, our Poisson solver agrees well with the k-factor approximation for metal tips; it also agrees remarkably well for semiconductor tips-regardless of the semiconductor doping level. We ascribe this finding to the fact that even if a semiconductor tip is fully depleted of majority carriers under the typical SV conditions used in APT, an inversion layer will appear at the apex surface. The inversion forms a thin, conducting layer that screens the interior of the tip, thus mimicking metallic behavior at the apex surface. By contrast, we find that the k-factor approximation yields a very poor representation of the electrostatics of a purely dielectric tip. We put our numerical results into further context with a brief discussion of our own separate work and the results of other publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Any mention of commercial products is for information only; it does not imply recommendation or endorsement by NIST.

References

  1. W. Chen, P. Pareige, in Semiconductor Nanowires, ed. by J. Arbiol, Q. Xiong, Woodhead Publishing Series in Electronic and Optical Materials (Woodhead Publishing, 2015), pp. 305–326. https://doi.org/10.1016/B978-1-78242-253-2.00011-6

  2. C. Kong, S. Cheong, R.D. Tilley, in Comprehensive Nanoscience and Nanotechnology (Second Edition), ed. by D.L. Andrews, R.H. Lipson, T. Nann, second edition edn. (Academic Press, Oxford, 2019), pp. 327–356. https://doi.org/10.1016/B978-0-12-803581-8.10432-1

  3. R. Kohli, in Developments in Surface Contamination and Cleaning, ed. by R. Kohli, K. Mittal (William Andrew Publishing, Oxford, 2012), pp. 215–306. https://doi.org/10.1016/B978-1-4377-7883-0.00005-5

  4. X. Wang, C. Hatzoglou, B. Sneed, Z. Fan, W. Guo, K. Jin, D. Chen, H. Bei, Y. Wang, W.J. Weber, Y. Zhang, B. Gault, K.L. More, F. Vurpillot, J.D. Poplawsky, Nat. Commun. 11(1), 1022 (2020). https://doi.org/10.1038/s41467-020-14832-w

    Article  CAS  Google Scholar 

  5. M.D. Mulholland, D.N. Seidman, Microsc. Microanal. 17(6), 950 (2011). https://doi.org/10.1017/S1431927611011895

    Article  CAS  Google Scholar 

  6. J.H. Bunton, J.D. Olson, D.R. Lenz, T.F. Kelly, Microsc. Microanal. 13(6), 418 (2007). https://doi.org/10.1017/S1431927607070869

    Article  CAS  Google Scholar 

  7. G.L. Kellogg, T.T. Tsong, J. Appl. Phys. 51(2), 1184 (1980). https://doi.org/10.1063/1.327686

    Article  CAS  Google Scholar 

  8. M. Gilbert, F. Vurpillot, A. Vella, H. Bernas, B. Deconihout, Ultramicroscopy 107(9), 767 (2007). https://doi.org/10.1016/j.ultramic.2007.02.027

    Article  CAS  Google Scholar 

  9. M.K. Miller, R.G. Forbes, Field Evaporation and Related Topics (Springer, Boston, 2014), pp. 111–187

    Google Scholar 

  10. P.J. Birdseye, D. Smith, Surface Sci. 23(1), 198 (1970). https://doi.org/10.1016/0039-6028(70)90013-0

    Article  CAS  Google Scholar 

  11. T.F. Kelly, Atom-Probe Tomography (Springer, Cham, 2019), p. 2

    Google Scholar 

  12. R. Gomer, Surface Sci. 299–300, 129 (1994)

    Article  Google Scholar 

  13. A. Cerezo, P.H. Clifton, M.J. Galtrey, C.J. Humphreys, T.F. Kelly, D.J. Larson, S. Lozano-Perez, E.A. Marquis, R.A. Oliver, G. Sha, K. Thompson, M. Zandbergen, R.L. Alvis, Mater. Today 10(12), 36 (2007). https://doi.org/10.1016/S1369-7021(07)70306-1

    Article  CAS  Google Scholar 

  14. S.M. Reddy, D.W. Saxey, W.D.A. Rickard, D. Fougerouse, S.D. Montalvo, R. Verberne, A. van Riessen, Geostandards Geoanal. Res. 44(1), 5 (2020)

    Article  Google Scholar 

  15. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, S.S. Bajikar, Ultramicroscopy 62(1), 29 (1996)

    Article  CAS  Google Scholar 

  16. S.T. Loi, B. Gault, S.P. Ringer, D.J. Larson, B.P. Geiser, Ultramicroscopy 132, 107 (2013)

    Article  CAS  Google Scholar 

  17. O. Madelung, Physical Data (Springer, Berlin, 1991), pp. 5–159. https://doi.org/10.1007/978-3-642-45681-7_2

    Book  Google Scholar 

  18. E.F. Schubert, Light-Emitting Diodes, 2nd edn. (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511790546

    Book  Google Scholar 

  19. B. El-Kareh, Thermal Oxidation and Nitridation (Springer, Boston, 1995), pp. 39–85. https://doi.org/10.1007/978-1-4615-2209-6_2

    Google Scholar 

  20. S.S. Bajikar, T.F. Kelly, P.P. Camus, Proceedings of the 42nd International Field Emission Symposium on Applied Surface Science 94–95, 464 (1996). https://doi.org/10.1016/0169-4332(95)00411-4

  21. J.R. Shewchuk, Computational Geometry 22(1), 21 (2002). 16th ACM Symposium on Computational Geometry. https://doi.org/10.1016/S0925-7721(01)00047-5

  22. J.R. Shewchuk, in Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148 (Springer-Verlag, 1996), pp. 203–222

  23. Z.C. Li, S. Wang, J. Comput. Appl. Math. 106(1), 21 (1999). https://doi.org/10.1016/S0377-0427(99)00051-5

    Article  Google Scholar 

  24. T. Dence, Math. Gazette 81(492), 403 (1997)

    Article  Google Scholar 

  25. K. Ueno, A. Kobayashi, H. Fujioka, AIP Adv. 9(7), 075123 (2019). https://doi.org/10.1063/1.5103185

    Article  CAS  Google Scholar 

  26. N.A. Sanford, P.T. Blanchard, M. Brubaker, K.A. Bertness, A. Roshko, J.B. Schlager, R. Kirchhofer, D.R. Diercks, B. Gorman, Phys. Status Solidi c 11(3–4), 608 (2014). https://doi.org/10.1002/pssc.201300579

    Article  CAS  Google Scholar 

  27. J. Ruzyllo, Silicon Dioxide\(SiO_2\) (World Scientific, Singapore, 2016).

  28. B.W. Caplins, P.T. Blanchard, A.N. Chiaramonti, D.R. Diercks, L. Miaja-Avila, N.A. Sanford, Ultramicroscopy 213, 112995 (2020). https://doi.org/10.1016/j.ultramic.2020.112995

    Article  CAS  Google Scholar 

  29. E.P. Silaeva, L. Arnoldi, M.L. Karahka, B. Deconihout, A. Menand, H.J. Kreuzer, A. Vella, Nano Lett. 14(11), 6066 (2014). https://doi.org/10.1021/nl502715s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge generous support from NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Klein, B., Sanford, N.A. et al. Comparative Apex Electrostatics of Atom Probe Tomography Specimens. J. Electron. Mater. 50, 3022–3029 (2021). https://doi.org/10.1007/s11664-021-08932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08932-6

Keywords

Navigation