Skip to main content

Field Ion Microscopy for the Characterization of Scanning Probes

  • Chapter
Surface Science Tools for Nanomaterials Characterization

Abstract

Scanning probe microscopy (SPM) is a widely used tool for investigating the nanoscale structure of materials, as well as their electronic and mechanical properties with its related spectroscopic modes of operation. In SPM experiments, the sharp tip which probes the material under investigation is usually uncharacterized; however, its geometry and chemical composition play a large role in the SPM’s lateral imaging resolution and the features recorded in electronic and force spectroscopies. To carry out comparisons with modeling, one must consider a set of plausible tip structures and choose the one which best reproduces the experimental data recorded with the uncharacterized tip.

With an atomically defined tip prepared by FIM, the electronic and mechanical properties of the SPM probe are predetermined before the experiment, permitting direct comparison with theory, as well as the quantitative determination of parameters which depend on tip radius, such as stresses during indentation.

Here we describe the implementation of FIM for the characterization of scanning probe apices. This includes topics of tip integrity, characterization, advanced preparation methodologies, and key research findings from experiments which combine FIM and SPM techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that single-atom chemical sensitivity has also been achieved recently in STM and AFM techniques: inelastic electron tunneling spectroscopy in STM allows for measurement of the vibrational energies of individual chemical bonds, which is a form of chemical sensitivity – for example one can distinguish between hydrogen and deuterium bonds [18, 19]. In the case of AFM, however, it is more of a relative chemical sensitivity obtained by comparing force-distance interaction curves from different atomic species with the same tip. Absolute chemical identification relies on the specifics of the tip apex which is usually unknown [6].

  2. 2.

    An unconventional setup which allows tungsten probes, compatible with the high electric fields in FIM, to be used as SPM tips. The development of new AFM force sensors such as the qPlus [30] and length extension resonator [31, 32] conveniently allow tungsten probes to be used for AFM.

  3. 3.

    These fields are the highest achievable by laboratory techniques and are comparable in magnitude to those inside ionic crystals [10].

  4. 4.

    For example, the MCP is bombarded by 200 eV electrons for many days to remove gas atoms trapped in the channels.

  5. 5.

    Even in the case of admitting ultrapure He through a heated quartz tube, the normal pumping speed of the UHV system may have to be sacrificed during FIM. In our case, the turbo pump must be valved off as the heated quartz cannot provide a sufficient flux of He to reach 10−5 mbar.

  6. 6.

    A technique used by Müller with film and color photographic printing to identify individual changes among the many atomic sites on a FIM tip [81]. Here, it is done digitally.

  7. 7.

    FEM operates in a similar manner to FIM, but a field emission current is detected rather than field ionized gas atoms. A spatial map of the field emission current is visualized on an MCP/phosphor screen when the tip is negatively biased. The technique does not allow the atomic structure of the tip to be imaged.

  8. 8.

    Though the frequency of spikes was very much less on some of these substrates, their presence was still correlated with changes to the FIM tip.

  9. 9.

    If the latter were the case, tip changes would be seen all over the apex region from chemically bound atoms.

  10. 10.

    The images of modified tips that we display are taken at as low a voltage as possible to minimize tip changes, but it is impossible to determine how many atoms desorb before the onset of imaging. Numerous images are acquired while the voltage is slowly increased; they are averaged together in sets where the tip structure remains constant. The stability of modified tips may increase with decreasing temperature. However, changing the temperature will not change the ionization field of the adsorbed atoms relative to tungsten or the imaging gas.

  11. 11.

    It takes many layers of field evaporation to increase the radius significantly.

  12. 12.

    In order to screen for tip changes during the STM experiment itself, one may want to acquire a higher bandwidth version of the tunneling current signal throughout the entire experiment to scrutinize carefully for spikes. By higher bandwidth, we mean the several kHz bandwidth of the current preamplifier, rather than the ∼100 Hz pixel STM scan rate.

References

  1. Fink H-W (1986) Mono-atomic tips for scanning tunneling microscopy. IBM J Res Dev 30(5):460–465

    Article  CAS  Google Scholar 

  2. Giessibl FJ, Hembacher S, Mannhart J (2004) Force microscopy with light-atom probes. Science 305(5682):380–383

    Article  CAS  Google Scholar 

  3. Campbellová A, Ondrácek M, Pou P, Pérez R, Klapetek P, Jelínek P (2011) ‘Sub-atomic’ resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Nanotechnology 22(29):295710

    Article  Google Scholar 

  4. Hofer WA, Redinger J (1998) Electronic structure of a realistic STM tip: the role of different apex atoms. Philos Mag Part B 78(5):519–525

    Article  CAS  Google Scholar 

  5. Kwapinski T, Jalochowski M (2010) Signature of tip electronic states on tunneling spectra. Surf Sci 604(19–20):1752–1756

    Article  CAS  Google Scholar 

  6. Sugimoto Y, Pou P, Abe M, Jelínek P, Pérez R, Morita S, Custance O (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446(7131):64–67

    Article  CAS  Google Scholar 

  7. Ternes M, González C, Lutz CP, Hapala P, Giessibl FJ, Jelínek P, Heinrich AJ (2011) Interplay of conductance, force, and structural change in metallic point contacts. Phys Rev Lett 106(1):016802

    Article  CAS  Google Scholar 

  8. Wagner RJ, Ma L, Tavazza F, Levine LE (2008) Dislocation nucleation during nanoindentation of aluminum. J Appl Phys 104(11):114311

    Article  CAS  Google Scholar 

  9. Shin C, Osetsky Y, Stoller R (2012) Dislocation nucleation and defect formation in copper by stepped spherical indenter. Philos Mag 92(25–27):3158–3171

    Article  CAS  Google Scholar 

  10. Mehrez H, Wlasenko A, Larade B, Taylor J, Grütter P, Guo H (2002) I-V characteristics and differential conductance fluctuations of Au nanowires. Phys Rev B 65(19):195419

    Article  CAS  Google Scholar 

  11. Müller EW (1951) Das Feldionenmikroskop. Z Phys 131(1):136–142

    Article  Google Scholar 

  12. Tsong TT (1990) Atom-probe field ion microscopy. Cambridge University Press, New York

    Book  Google Scholar 

  13. Antczak G, Ehrlich G (2010) Surface diffusion. Cambridge University Press, New York

    Book  Google Scholar 

  14. Gault B, Moody M, Cairney JM, Ringer SP (2012) Atom probe crystallography. Mater Today 15(9):378–386

    Article  CAS  Google Scholar 

  15. Miller MK, Kelly TF, Rajan K, Ringer SP (2012) The future of atom probe tomography. Mater Today 15(4):158–165

    Article  CAS  Google Scholar 

  16. Müller EW, Panitz JA, McLane SB (1968) The atom-probe field ion microscope. Rev Sci Instrum 39(1):83

    Article  Google Scholar 

  17. Panitz JA (1973) The 10 cm atom probe. Rev Sci Instrum 44(8):1034

    Article  CAS  Google Scholar 

  18. Lee HJ, Ho W (1999) Single-bond formation and characterization with a scanning tunneling microscope. Science 286(5445):1719–1722

    Article  CAS  Google Scholar 

  19. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735

    Article  CAS  Google Scholar 

  20. Zhou W, Wang ZL (eds) (2006) Scanning microscopy for nanotechnology. Springer, New York

    Google Scholar 

  21. Binnig G, Rohrer H (1987) Scanning tunneling microscopy – from birth to adolescence. Rev Mod Phys 59(3):615–625

    Article  CAS  Google Scholar 

  22. Chen CJ (2008) Introduction to scanning tunneling microscopy, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  23. Stroscio JA, Kaiser WJ (eds) (1993) Scanning tunneling microscopy, 1st edn. Academic, San Diego

    Google Scholar 

  24. Sarid D (1994) Scanning force microscopy. Oxford University Press, New York

    Google Scholar 

  25. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75(3):949–983

    Article  CAS  Google Scholar 

  26. Hauptmann N, Mohn F, Gross L, Meyer G, Frederiksen T, Berndt R (2012) Force and conductance during contact formation to a C 60 molecule. New J Phys 14(7):073032

    Article  CAS  Google Scholar 

  27. El Ouali M (2010) Nanometre scale indentation: effect of very sharp indenters on adhesion, plasticity, and electronic transport. PhD thesis, McGill University

    Google Scholar 

  28. Hagedorn T (2010) Atomic contacts characterized by force and current. PhD thesis, McGill University

    Google Scholar 

  29. Paul W (2013) Atomically defined tips in scanning probe microscopy. PhD thesis, McGill

    Google Scholar 

  30. Giessibl FJ (1998) High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl Phys Lett 73(26):3956

    Article  CAS  Google Scholar 

  31. Bartzke K, Antrack T, Schmidt K-H, Dammann E, Schatterny CH (1993) Needle sensor-a micromechanical detector for atomic force microscopy. Int J Optoelectron 8:669

    Google Scholar 

  32. Michels A, Meinen F, Murdfield T, Göhde W, Fischer UC, Beckmann E, Fuchs H (1995) 1 MHz quartz length extension resonator as a probe for scanning near-field acoustic microscopy. Thin Solid Films 264(2):172–175

    Article  CAS  Google Scholar 

  33. Dürig U, Novotny L, Michel B, Stalder A (1997) Logarithmic current-to-voltage converter for local probe microscopy. Rev Sci Instrum 68(10):3814

    Article  Google Scholar 

  34. Schönenberger C, Alvarado SF (1989) A differential interferometer for force microscopy. Rev Sci Instrum 60:3131

    Article  Google Scholar 

  35. Lalanne J-B, Paul W, Oliver D, Grütter PH (2011) Note: electrochemical etching of sharp iridium tips. Rev Sci Instrum 82(11):116105

    Article  CAS  Google Scholar 

  36. Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) Atom probe field ion microscopy. Oxford University Press, Oxford

    Google Scholar 

  37. Lucier A-S, Mortensen H, Sun Y, Grütter PH (2005) Determination of the atomic structure of scanning probe microscopy tungsten tips by field ion microscopy. Phys Rev B 72(23):235420

    Article  CAS  Google Scholar 

  38. Ibe JP, Bey PP, Brandow SL, Brizzolara RA, Burnham NA, DiLella DP, Colton RJ, Lee KP, Marrian CRK (1990) On the electrochemical etching of tips for scanning tunneling microscopy. J Vacuum Sci Technol A 8(4):3570

    Article  CAS  Google Scholar 

  39. Melmed AJ (1991) The art and science and other aspects of making sharp tips. J Vacuum Sci Technol B Microelectron Nanometer Struct 9(2):601

    Article  CAS  Google Scholar 

  40. Ekvall I, Wahlström E, Claesson D, Olin H, Olsson E (1999) Preparation and characterization of electrochemically etched W tips for STM. Meas Sci Technol 10(1):11–18

    Article  CAS  Google Scholar 

  41. Hagedorn T, El Ouali M, Paul W, Oliver D, Miyahara Y, Grütter PH (2011) Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope. Rev Sci Instrum 82(11):113903

    Article  CAS  Google Scholar 

  42. Lucier A-S (2004) Preparation and characterization of tungsten tips suitable for molecular electronics studies. Master’s thesis, McGill University

    Google Scholar 

  43. Setvin M, Javorský J, Turcinková D, Matolinová I, Sobotik P, Kocán P, Ošt’ádal I (2012) Ultrasharp tungsten tips-characterization and nondestructive cleaning. Ultramicroscopy 113:152–157

    Article  CAS  Google Scholar 

  44. Greiner M, Kruse P (2007) Recrystallization of tungsten wire for fabrication of sharp and stable nanoprobe and field-emitter tips. Rev Sci Instrum 78(2):026104

    Article  CAS  Google Scholar 

  45. Verlinden B, Driver J, Samajdar I, Doherty RD (2007) Thermo-mechanical processing of metallic materials. Elsevier, Oxford

    Google Scholar 

  46. Webber RD, Walls JM, Smith R (1978) Ring counting in field-ion micrographs. J Microsc 113(3):291–299

    Article  CAS  Google Scholar 

  47. Bolin PL, Ranganathan BN, Bayuzick RJ (1976) Determination of field ion tip shapes. J Phys E Sci Instrum 9(5):363–365

    Article  Google Scholar 

  48. Webber RD, Walls JM (1979) The shape of field-ion emitters. J Phys D Appl Phys 12(9):1589–159

    Article  CAS  Google Scholar 

  49. Moore AJW (1962) The structure of atomically smooth spherical surfaces. J Phys Chem Solid 23(7):907–912

    Article  CAS  Google Scholar 

  50. Rao PVM, Jensen CP, Silver RM (2004) Enhanced model for scanning tunneling microscope tip geometry measured with field ion microscopy. J Vacuum Sci Technol B Microelectron Nanometer Struct 22(2):636–641

    Article  CAS  Google Scholar 

  51. Falter J, Langewisch G, Hölscher H, Fuchs H, Schirmeisen A (2013) Field ion microscopy characterized tips in noncontact atomic force microscopy: quantification of long-range force interactions. Phys Rev B 87(11):115412

    Article  CAS  Google Scholar 

  52. Urban R, Wolkow RA, Pitters JL (2012) Field ion microscope evaluation of tungsten nanotip shape using He and Ne imaging gases. Ultramicroscopy 122:60–64

    Article  CAS  Google Scholar 

  53. Pitters JL, Urban R, Wolkow R (2012) Creation and recovery of a W(111) single atom gas field ion source. J Chem Phys 136(15):154704

    Article  CAS  Google Scholar 

  54. Rezeq M, Pitters J, Wolkow R (2006) Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen. J Chem Phys 124(20):204716

    Article  CAS  Google Scholar 

  55. Rezeq M, Pitters J, Wolkow R (2008) Nano-tip fabrication by spatially controlled etching. US Patent 7431856 B2, Dec 2008

    Google Scholar 

  56. Ehrlich G, Hudda FG (1962) Direct observation of individual adatoms: nitrogen on tungsten. J Chem Phys 36(12):3233

    Article  Google Scholar 

  57. Mulson JF, Müller EW (1963) Corrosion of tungsten and iridium by field desorption of nitrogen and carbon monoxide. J Chem Phys 38(11):2615

    Article  CAS  Google Scholar 

  58. Ermanoski I, Pelhos K, Chen W, Quinton JS, Madey TE (2004) Oxygen-induced nano-faceting of Ir(210). Surf Sci 549(1):1–23

    Article  CAS  Google Scholar 

  59. Song K-J, Dong C-Z, Madey TE (1991) Faceting of W (111) induced by Ultrathin Pd films. Langmuir 6:3019–3026

    Article  Google Scholar 

  60. Szczepkowicz A, Ciszewski A, Bryl R, Oleksy C, Nien C-H, Wu Q, Madey TE (2005) A comparison of adsorbate-induced faceting on flat and curved crystal surfaces. Surf Sci 599(1–3):55–68

    Article  CAS  Google Scholar 

  61. Chang C-C, Kuo H-S, Tsong TT, Hwang I-S (2009) A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter. Nanotechnology 20(11):115401

    Article  CAS  Google Scholar 

  62. Fu T-Y, Lin Y-C, Kuo H-S, Hwang I-S, Tsong TT (2007) Study of two types of Ir or Rh covered single atom pyramidal W tips. Surf Sci 601(18):3992–3995

    Article  CAS  Google Scholar 

  63. Hwang I-S, Kuo H-S, Chang C-C, Tsong TT (2010) Noble-metal covered W(111) single-atom electron sources. J Electrochem Soc 157(2):7

    Article  CAS  Google Scholar 

  64. Kuo H-S, Hwang I-S, Fu T-Y, Hwang Y-S, Lu Y-H, Lin C-Y, Tsong TT, Hou J-L (2009) A single-atom sharp iridium tip as an emitter of gas field ion sources. Nanotechnology 20(33):335701

    Article  CAS  Google Scholar 

  65. Kuo H-S, Hwang I-S, Fu T-Y, Lin Y-C, Chang C-C, Tsong TT (2006) Noble Metal/W(111) single-atom tips and their field electron and ion emission characteristics. Jpn J Appl Phys 45(11):8972–8983

    Article  CAS  Google Scholar 

  66. Kuo H-S, Hwang I-S, Fu T-Y, Lin Y-C, Chang C-C, Tsong TT (2006) Preparation of single-atom tips and their field emission behaviors. e-J Surf Sci Nanotechnol 4(February):233–238

    Google Scholar 

  67. Kuo H-S, Hwang I-S, Fu T-Y, Lu Y-H, Lin C-Y, Tsong TT (2008) Gas field ion source from an Ir/W <111> single-atom tip. Appl Phys Lett 92(6):063106

    Article  CAS  Google Scholar 

  68. Nomura K, Rokuta E, Itagaki T, Oshima C, Kuo H-S, Tsong TT (2008) Electron emission characteristics of Au-covered tungsten <111> Nanotips. e-J Surf Sci Nanotechnol 6(January):25–28

    Google Scholar 

  69. Golubok A, Masalov S, Tarasov N (1992) Thermofield tip formation in UHV/STM combined with field-emission microscope. Ultramicroscopy 42–44:1574–1579

    Article  Google Scholar 

  70. Pavlov VG (2005) Field-desorption microscopy study of the deformation of a tungsten tip subjected to thermal treatment in an electric field. Phys Solid State 47(11):2180

    Article  CAS  Google Scholar 

  71. Pavlov VG (2006) Variations in shapes of outgrowths on a tungsten tip during growth in an electric field. Phys Solid State 48(5):969–972

    Article  CAS  Google Scholar 

  72. Pavlov VG (2007) Atomically sharp <111> trihedral angle of a tungsten tip. Phys Solid State 49(8):1579–1582

    Article  CAS  Google Scholar 

  73. Fischer-Cripps AC (2011) Nanoindentation, volume 1 of mechanical engineering series. Springer, New York

    Google Scholar 

  74. Ehrlich G, Hudda FG (1960) Observation of adsorption on an atomic scale. J Chem Phys 33(4):1253

    Article  CAS  Google Scholar 

  75. Holscher AA, Sachtler WMH (1966) Chemisorption and surface corrosion in the tungsten + carbon monoxide system, as studied by field emission and field ion microscopy. Discuss Faraday Soc 41:29

    Article  Google Scholar 

  76. Cranstoun GKL, Anderson JS (1972) Field ion microscope studies of very low coverage low temperature oxygen adsorption on tungsten. Surf Sci 32(2):397–421

    Article  CAS  Google Scholar 

  77. Ehrlich G, Hudda FG (1963) Promoted field desorption and the visibility of adsorbed atoms in the ion microscope. Philos Mag 8(93):1587–1591

    Article  CAS  Google Scholar 

  78. Lewis RT, Gomer R (1971) Adsorption studies in the field ion microscope with argon imaging. Surf Sci 26(1):197–229

    Article  CAS  Google Scholar 

  79. Müller EW, Tsong TT (1974) Field ion microscopy, field ionization and field evaporation. Prog Surf Sci 4(i):1–139

    Article  Google Scholar 

  80. Paul W, Miyahara Y, Grütter PH (2012) Implementation of atomically defined field ion microscopy tips in scanning probe microscopy. Nanotechnology 23(33):335702

    Article  CAS  Google Scholar 

  81. Müller EW (1957) Study of atomic structure of metal surfaces in the field ion microscope. J Appl Phys 28(1):1

    Article  Google Scholar 

  82. Lias SG (2011) Ionization energies of gas-phase molecules. In: CRC Handbook of chemistry and physics, 92nd edn. CRC Press, Boca Raton

    Google Scholar 

  83. Singleton JH (2001) Practical guide to the use of Bayard-Alpert ionization gauges. J Vacuum Sci Technol A Vacuum Surf Films 19(4):1712

    Article  CAS  Google Scholar 

  84. Weston GF (1985) Ultrahigh vacuum practice. Butterworth, Toronto

    Google Scholar 

  85. Zelterman D (2006) Models for discrete data. Oxford University Press, New York

    Google Scholar 

  86. Paul W, Miyahara Y, Grütter PH (2013) Simple Si(111) surface preparation by thin wafer cleavage. J Vacuum Sci Technol A Vacuum Surf Films 31(2):023201

    Article  CAS  Google Scholar 

  87. Kuk Y, Silverman PJ (1986) Role of tip structure in scanning tunneling microscopy. Appl Phys Lett 48(23):1597

    Article  CAS  Google Scholar 

  88. Kuk Y, Silverman PJ (1989) Scanning tunneling microscope instrumentation. Rev Sci Instrum 60(2):165

    Article  CAS  Google Scholar 

  89. Sakurai T, Hashizume T, Hasegawa Y, Kamiya I, Sano N, Yokoyama H, Tanaka H, Sumita I, Hyodo S (1990) New versatile room-temperature field ion scanning tunneling microscopy. J Vacuum Sci Technol A Vacuum Surf Films 8(1):324

    Article  Google Scholar 

  90. Sakurai T, Hashizume T, Kamiya I, Hasegawa Y, Sano N, Pickering H, Sakai A (1990) Field ion-scanning tunneling microscopy. Prog Surf Sci 33(1):3–89

    Article  CAS  Google Scholar 

  91. Hashizume T, Sakurai T (1997) FI-STM Investigation of fullerenes adsorbed on the semiconductor and metal surfaces (STM-C60), science reports of the research institutes, Tohoku University. Ser A Phy Chem Metall A44:17

    Google Scholar 

  92. Hashizume T, Wang X-D, Nishina Y, Shinohara H, Saito Y, Kuk Y, Sakurai T (1992) Field ion-scanning tunneling microscopy study of C 60 on the Si(100) surface. Jpn J Appl Phys 31(Part 2, No. 7A):L880–L883

    Article  CAS  Google Scholar 

  93. Wang X-D, Hashizume T, Shinohara H, Saito Y, Nishina Y, Sakurai T (1992) Scanning tunneling microscopy of C 60 on the Si(111)7 × 7 surface. Jpn J Appl Phys 31(Part 2, No. 7B):L983–L986

    Article  CAS  Google Scholar 

  94. Hashizume T, Sumita I, Murata Y, Hyodo S, Sakurai T (1991) Cs adsorption on the Si(100)2 × 1 surfaces. J Vacuum Sci Technol B Microelectron Nanometer Struct 9(2):742

    Article  CAS  Google Scholar 

  95. An T, Eguchi T, Akiyama K, Hasegawa Y (2005) Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator. Appl Phys Lett 87(13):133114

    Article  CAS  Google Scholar 

  96. Tomitori M, Hirano N, Iwawaki F, Watanabe Y, Takayanagi T, Nishikawa O (1990) Elaboration and evaluation of tip manipulation of scanning tunneling microscopy. J Vacuum Sci Technol A Vacuum Surf Films 8(1):425

    Article  CAS  Google Scholar 

  97. Tomitori M, Sugata K, Okuyama G, Kimata H (1996) Reproducibility of scanning tunneling spectroscopy of Si(111)7 × 7 using a build-up tip. Surf Sci 355(1–3):21–30

    Article  CAS  Google Scholar 

  98. Spence JCH, Weierstall U, Lo W (1996) Atomic species identification in scanning tunneling microscopy by time-of-flight spectroscopy. J Vacuum Sci Technol B Microelectron Nanometer Struct 14(3):1587

    Article  CAS  Google Scholar 

  99. Weierstall U, Spence JCH (1998) Atomic species identification in STM using an imaging atom-probe technique. Surf Sci 398(1–2):267–279

    Article  CAS  Google Scholar 

  100. Fian A, Ernst C, Leisch M (1999) Combined atom probe and STM study of tip-substrate interactions. Fresenius J Anal Chem 365(1–3):38–42

    Article  CAS  Google Scholar 

  101. Landman U, Luedtke WD, Burnham NA, Colton RJ (1990) Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248(4954):454–461

    Article  CAS  Google Scholar 

  102. Nishikawa O, Walko R (1971) Field ion microscopical observation of twinning in iridium induced by a mechanical contact. Acta Metall 19(11):1163–1168

    Article  CAS  Google Scholar 

  103. Fian A, Leisch M (2003) Study on tip-substrate interactions by STM and APFIM. Ultramicroscopy 95(1–4):189–197

    Article  CAS  Google Scholar 

  104. Paul W, Oliver D, Miyahara Y, Grütter P (2014) FIM tips in SPM: Apex orientation and temperature considerations on atom transfer and diffusion. Appl Surf Sci 305:124–132

    Google Scholar 

  105. Schirmeisen A, Cross G, Stalder A, Grütter PH, Dürig U (2000) Metallic adhesion forces and tunneling between atomically defined tip and sample. Appl Surf Sci 157(4):274–279

    Article  CAS  Google Scholar 

  106. An T, Nishio T, Eguchi T, Ono M, Nomura A, Akiyama K, Hasegawa Y (2008) Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length- extension resonator. Rev Sci Instrum 79(3):033703

    Article  CAS  Google Scholar 

  107. Hudlet S, Saint JM, Guthmann C, Berger J (1998) Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface. Eur Phys J B 2(1):5–10

    Article  CAS  Google Scholar 

  108. Argento C, French RH (1996) Parametric tip model and force-distance relation for Hamaker constant determination from atomic force microscopy. J Appl Phys 80(11):6081

    Article  CAS  Google Scholar 

  109. Sadewasser S, Jelinek P, Fang C-K, Custance O, Yamada Y, Sugimoto Y, Abe M, Morita S (2009) New insights on atomic-resolution frequency-modulation kelvin-probe force-microscopy imaging of semiconductors. Phys Rev Lett 103:266103

    Article  CAS  Google Scholar 

  110. Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231

    Article  CAS  Google Scholar 

  111. Sinnott SB, Heo S-J, Brenner DW, Harrison JA, Irving DL (2011) Computer simulations of nanometer-scale indentation and friction. In: Nanotribology and Nanomechanics I. Springer, Berlin/Heidelberg, chapter 10

    Google Scholar 

  112. Luan B, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435(7044):929–932

    Article  CAS  Google Scholar 

  113. Lassner E, Schubert W-D (1999) Tungsten. Springer US, New York (DOI: 10.1007/978-1-4615-4907-9)

    Google Scholar 

  114. Cross GLW, Schirmeisen A, Grütter PH, Dürig U (2006) Plasticity, healing and shakedown in sharp- asperity nanoindentation. Nat Mater 5(5):370–376

    Article  CAS  Google Scholar 

  115. Oliver DJ, Maassen J, El Ouali M, Paul W, Hagedorn T, Miyahara Y, Qi Y, Guo H, Grütter PH (2012) Conductivity of an atomically defined metallic interface. Proc Natl Acad Sci U S A 109(47):19097–19102

    Article  CAS  Google Scholar 

  116. Paul W, Oliver D, Miyahara Y, Grütter PH (2013) Minimum threshold for incipient plasticity in the atomic-scale nanoindentation of Au(111). Phys Rev Lett 110(13):135506

    Article  CAS  Google Scholar 

  117. Paul W, Oliver D, Miyahara Y, Grütter P (2013) Transient adhesion and conductance phenomena in initial nanoscale mechanical contacts between dissimilar metals. Nanotechnology 24(47):475704

    Article  CAS  Google Scholar 

  118. Oliver D, Paul W, El Ouali M, Hagedorn T, Miyahara Y, Qi Y, Grütter P (2014) One-to-one spatially matched experiment and atomistic simulations of nanometre-scale indentation. Nanotechnology 25:025701

    Article  CAS  Google Scholar 

  119. Lawn BR, Cook RF (2012) Probing material properties with sharp indenters: a retrospective. J Mater Sci 47(1):1–22

    Article  CAS  Google Scholar 

  120. Agraït N, Yeyati AL, van Ruitenbeek JM (2003) Quantum properties of atomic-sized conductors. Phy Rep 377(2–3):81–279

    Article  CAS  Google Scholar 

  121. Feldman B, Park S, Haverty M, Shankar S, Dunham ST (2010) Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering. Phys Status Solidi (B) 247(7):1791–1796

    Article  CAS  Google Scholar 

  122. Srivastava MK, Wang Y, Zhang X-G, Nicholson DMC, Cheng H-P (2012) Plane-wave transport method for low-symmetry lattices and its application. Phys Rev B 86(7):075134

    Article  CAS  Google Scholar 

  123. Zhou B-H, Xu Y, Wang S, Zhou G, Xia K (2010) An ab initio investigation on boundary resistance for metallic grains. Solid State Commun 150(29–30):1422–1424

    Article  CAS  Google Scholar 

  124. Xu P, Xia K, Zwierzycki M, Talanana M, Kelly P (2006) Orientation-dependent transparency of metallic interfaces. Phys Rev Lett 96(17):176602

    Article  CAS  Google Scholar 

  125. Kim T-H, Zhang X-G, Nicholson DM, Evans BM, Kulkarni NS, Radhakrishnan B, Kenik EA, Li A-P (2010) Large discrete resistance jump at grain boundary in copper nanowire. Nano Lett 10(8):3096–3100

    Article  CAS  Google Scholar 

  126. Clark KW, Zhang X-G, Vlassiouk IV, He G, Feenstra RM, Li A-P (2013) Spatially resolved mapping of electrical conductivity across individual domain (Grain) boundaries in graphene. ACS Nano 9:7956–7966

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paul, W., Grütter, P. (2015). Field Ion Microscopy for the Characterization of Scanning Probes. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_5

Download citation

Publish with us

Policies and ethics