Skip to main content
Log in

Negative Hall Factor of Acceptor Impurity Hopping Conduction in p-Type 4H-SiC

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Experimental data obtained from temperature-dependent Hall-effect measurements on Al-doped p-type 4H-SiC samples, which exhibit an anomalous sign reversal of the Hall coefficient to negative at low temperatures, are analyzed on the basis of a previously proposed impurity hopping conduction model. According to the small-polaron theory for the nonadiabatic case, the activation energy E3 for the drift mobility of nearest-neighbor hopping is deduced, taking into account the temperature dependence of the preexponential factor. Existing models for the sign of the Hall coefficient are critically examined. It is shown that the anomalous sign reversal of the Hall coefficient can be well explained by assuming a hopping Hall factor in the form \( A_{{\rm H}3} = \left( {k_{\rm B} T/J_{3} } \right)\exp \left( {K_{{\rm H}} E_{3} /k_{\rm B} T} \right) \) with a negative sign of J3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Buch and H. Labhart, Helv. Phys. Acta 19, 463 (1946).

    Google Scholar 

  2. C.S. Hung and J.R. Gliessman, Phys. Rev. 79, 726 (1950).

    Article  CAS  Google Scholar 

  3. G.A. Lomakina, E.N. Mokhov, and V.G. Oding, Sov. Phys. Semicond. 17, 72 (1983).

    Google Scholar 

  4. H.J. van Daal, Philips Res. Rep. Suppl. 3, 1 (1965).

    Google Scholar 

  5. M.N. Alexander, Phys. Rev. 172, 331 (1968).

    Article  CAS  Google Scholar 

  6. M.V. Alekseenko, A.I. Veinger, A.G. Zabrodskii, V.A. Ilin, Y.M. Tairov, and V.F. Tsvetkov, JETP Lett. 39, 304 (1984).

    Google Scholar 

  7. A.O. Evwaraye, S.R. Smith, W.C. Mitchel, and M.D. Roth, Appl. Phys. Lett. 68, 3159 (1996).

    Article  CAS  Google Scholar 

  8. W.C. Mitchel, A.O. Evwaraye, S.R. Smith, and M.D. Roth, J. Electron. Mater. 26, 113 (1997).

    Article  CAS  Google Scholar 

  9. K. Tone and J.H. Zhao, IEEE Trans. Electron Devices 46, 612 (1999).

    Article  CAS  Google Scholar 

  10. V. Heera, K.N. Madhusoodanan, W. Skorupa, C. Dubois, and H. Romanus, J. Appl. Phys. 99, 123716 (2006).

    Article  CAS  Google Scholar 

  11. S. Ji, K. Eto, S. Yoshida, K. Kojima, Y. Ishida, S. Saito, H. Tsuchida, and H. Okumura, Appl. Phys. Express 8, 121302 (2015).

    Article  CAS  Google Scholar 

  12. A. Parisini, M. Gorni, A. Nath, L. Belsito, M.V. Rao, and R. Nipoti, J. Appl. Phys. 118, 035101 (2015).

    Article  CAS  Google Scholar 

  13. S. Contreras, L. Konczewicz, P. Kwasnicki, R. Arvinte, H. Peyre, T. Chassagne, M. Zielinski, M. Kayambaki, S. Juillaguet, and K. Zekentes, Mater. Sci. Forum 858, 249 (2016).

    Article  Google Scholar 

  14. A. Parisini and R. Nipoti, J. Phys. Condens. Matter 29, 035703 (2017).

    Article  CAS  Google Scholar 

  15. H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S.Y. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida, and H. Okumura, Mater. Sci. Forum 924, 188 (2018).

    Article  Google Scholar 

  16. H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S.Y. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida, and H. Okumura, Appl. Phys. Express 11, 101302 (2018).

    Article  Google Scholar 

  17. H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida, and H. Okumura, Jpn. J. Appl. Phys. 58, 098004 (2019).

    Article  CAS  Google Scholar 

  18. H. Matsuura, A. Takeshita, A. Hidaka, S.Y. Ji, K. Eto, T. Mitani, K. Kojima, T. Kato, S. Yoshida, and H. Okumura, Jpn. J. Appl. Phys. 59, 051004 (2020).

    Article  CAS  Google Scholar 

  19. M. Krieger, K. Semmelroth, and G. Pensl, Mater. Sci. Forum 457–460, 685 (2004).

    Article  Google Scholar 

  20. H. Yonemitsu, H. Maeda, and H. Miyazawa, J. Phys. Soc. Jpn. 15, 1717 (1960).

    Article  CAS  Google Scholar 

  21. A.B. Henriques, N.F. Oliveira Jr, S.A. Obukhov, and V.A. Sanina, JETP Lett. 69, 386 (1999).

    Article  CAS  Google Scholar 

  22. S.A. Obukhov, Solid State Commun. 70, 103 (1989).

    Article  CAS  Google Scholar 

  23. S.A. Obukhov, Phys. Stat. Sol. B 242, 1298 (2005).

    Article  CAS  Google Scholar 

  24. S.A. Obukhov, Phys. Stat. Sol. C 9, 247 (2012).

    CAS  Google Scholar 

  25. S.A. Obukhov, S.W. Tozer, and W.A. Coniglio, Sci. Rep. 5, 13451 (2015).

    Article  CAS  Google Scholar 

  26. D.L. Partin, J. Heremans, and C.M. Thrush, J. Cryst. Growth 175/176, 860 (1997).

    Article  CAS  Google Scholar 

  27. M. Benzaquen, B. Belache, and C. Blaauw, Phys. Rev. B 46, 6732 (1992).

    Article  CAS  Google Scholar 

  28. M. Benzaquen, B. Belache, and D. Walsh, Phys. Rev. B 44, 13105 (1991).

    Article  CAS  Google Scholar 

  29. S.B. Mikhirin and K.F. Shtel’makh, Phys. B 308–310, 881 (2001).

    Article  Google Scholar 

  30. B. Gunning, J. Lowder, M. Moseley, and W.A. Doolittle, Appl. Phys. Lett. 101, 082106 (2012).

    Article  CAS  Google Scholar 

  31. M. Jaime, H.T. Hardner, M.B. Salamon, M. Rubinstein, P. Dorsey, and D. Emin, Phys. Rev. Lett. 78, 951 (1997).

    Article  CAS  Google Scholar 

  32. N.V. Agrinskaya, V.I. Kozub, and D.S. Poloskin, Semiconductors 44, 472 (2010).

    Article  CAS  Google Scholar 

  33. Y. Kajikawa, Phys. Stat. Sol. C 14, 1600129 (2017).

    Google Scholar 

  34. Y. Kajikawa, Phys. Stat. Sol. C 14, 1600215 (2017).

    Google Scholar 

  35. Y. Kajikawa, Phys. Stat. Sol. C 14, 1600217 (2017).

    Google Scholar 

  36. J. Pernot, S. Contreras, and J. Camassel, J. Appl. Phys. 98, 023706 (2005).

    Article  CAS  Google Scholar 

  37. N.A. Poklonski and V.F. Stelmakh, Phys. Stat. Sol. B 117, 93 (1983).

    Article  Google Scholar 

  38. N.A. Poklonskiĭ and S.Y. Lopatin, Phys. Solid State 43, 2219 (2001).

    Article  CAS  Google Scholar 

  39. H. Böttger and V.V. Bryksin, Hopping Conduction in Solids (Berlin: Akademie-Verlag, 1985).

    Google Scholar 

  40. P. Nagels in The Hall Effect and Its Applications, ed. By C. L. Chien and C. R. Westgate, (Plenum, New York, 1980), p. 253.

  41. T. Holstein, Ann. Phys. 8, 343 (1959).

    Article  CAS  Google Scholar 

  42. T. Holstein, Ann. Phys. 281, 725 (2000).

    Article  CAS  Google Scholar 

  43. B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Berlin: Springer, 1984).

    Book  Google Scholar 

  44. R. Mansfield, S. Abboudy, and P. Fozooni, Phil. Mag. B 57, 777 (1988).

    Article  CAS  Google Scholar 

  45. N.A. Poklonski, S.A. Vyrko, O.N. Poklonskaya, and A.G. Zabrodskii, J. Appl. Phys. 110, 123702 (2011).

    Article  CAS  Google Scholar 

  46. N.A. Poklonski, S.A. Vyrko, O.N. Poklonskaya, A.I. Kovalev, and A.G. Zabrodskii, J. Appl. Phys. 119, 245701 (2016).

    Article  CAS  Google Scholar 

  47. Y. Kajikawa, Phys. Stat. Sol. C 13, 387 (2016).

    CAS  Google Scholar 

  48. Y. Kajikawa, Int. J. Mod. Phys. B 34, 2050069 (2020).

    Article  CAS  Google Scholar 

  49. L. Friedman and T. Holstein, Ann. Phys. 21, 494 (1963).

    Article  CAS  Google Scholar 

  50. V.V. Bryskin and Y.A. Firsov, Sov. Phys. Solid State 12, 480 (1970).

    Google Scholar 

  51. H. Ihrig and D. Hennings, Phys. Rev. B 17, 4593 (1978).

    Article  CAS  Google Scholar 

  52. A. Avdonin, P. Skupinski, and K. Graza, Phys. B 483, 13 (2016).

    Article  CAS  Google Scholar 

  53. Y. Kajikawa, Phys. Stat. Sol. B 255, 1800063 (2018).

    Article  Google Scholar 

  54. Y. Kajikawa, Phys. Stat. Sol. B 257, 1900354 (2019).

    Article  CAS  Google Scholar 

  55. T. Holstein, Phil. Mag. 27, 225 (1973).

    Article  CAS  Google Scholar 

  56. D. Emin, Phil. Mag. 35, 1189 (1977): D. Emin, in The Hall Effect and Its Applications, ed. By C. L. Chien and C. R. Westgate, (Plenum, New York, 1980), p. 281.

  57. H. Tanaka, S. Asada, T. Kimoto, and J. Suda, J. Appl. Phys. 123, 245704 (2018).

    Article  CAS  Google Scholar 

  58. H. Matsuura, M. Komeda, S. Kagamihara, H. Iwata, R. Ishihara, T. Hatakeyama, T. Watanabe, K. Kojima, T. Shinohe, and K. Arai, J. Appl. Phys. 96, 2708 (2004).

    Article  CAS  Google Scholar 

  59. K. C. Shifrin, J. Phys. U.S.S.R. 8, 242 (1944).

  60. G.E. Stillman and C.M. Wolfe, Thin Solid Films 31, 69 (1976).

    Article  CAS  Google Scholar 

  61. J.S. Blakemore, Semiconductor Statistics (Mineola: Dover, 1987).

    Google Scholar 

  62. K. Hansen, E. Peiner, A. Schlachetzki, and M. Vonortenberg, J. Electron. Mater. 23, 935 (1994).

    Article  CAS  Google Scholar 

  63. G. Pensl, F. Schmid, F. Ciobanu, M. Laube, S.A. Reshanov, N. Schulze, K. Semmelroth, H. Nagasawa, A. Schoner, and G. Wagner, Mater. Sci. Forum 433–436, 365 (2002).

    Google Scholar 

  64. M.H. Weng, F. Roccaforte, F. Giannazzo, S. Di Franco, C. Bongiorno, M. Saggio, and V. Raineri, Mater. Sci. Forum 645–648, 713 (2010).

    Article  CAS  Google Scholar 

  65. V. Heera, D. Panknin, and W. Skorupa, Appl. Surf. Sci. 184, 307 (2001).

    Article  CAS  Google Scholar 

  66. F. Giannazzo, F. Roccaforte, and V. Raineri, Appl. Phys. Lett. 91, 202104 (2007).

    Article  CAS  Google Scholar 

  67. M.K. Linnarsson, M.S. Janson, U. Zimmermann, B.G. Svensson, P.O.A. Persson, L. Hultman, J. Wong-Leung, S. Karlsson, A. Schoner, H. Bleichner, and E. Olsson, Appl. Phys. Lett. 79, 2016 (2001).

    Article  CAS  Google Scholar 

  68. M.V. Rao, J.B. Tucker, M.C. Ridgway, O.W. Holland, N. Papanicolaou, and J. Mittereder, J. Appl. Phys. 86, 752 (1999).

    Article  CAS  Google Scholar 

  69. N.S. Saks, A.V. Suvorov, and D.C. Capell, Appl. Phys. Lett. 84, 5195 (2004).

    Article  CAS  Google Scholar 

  70. P. Achatz, J. Pernot, C. Marcenat, J. Kacmarcik, G. Ferro, and E. Bustarret, Appl. Phys. Lett. 92, 072103 (2008).

    Article  CAS  Google Scholar 

  71. A. Koizumi, J. Suda, and T. Kimoto, J. Appl. Phys. 106, 013716 (2009).

    Article  CAS  Google Scholar 

  72. S. Contreras, L. Konczewicz, R. Arvinte, H. Peyre, T. Chassagne, M. Zielinski, and S. Juillaguet, Phys. Stat. Sol. A 214, 1600679 (2017).

    Google Scholar 

  73. C. Darmody and N. Goldsman, J. Appl. Phys. 126, 145701 (2019).

    Article  CAS  Google Scholar 

  74. Y. Negoro, T. Kimoto, H. Matsunami, F. Schmid, and G. Pensl, J. Appl. Phys. 96, 4916 (2004).

    Article  CAS  Google Scholar 

  75. H.J. van Daal, W.F. Knippenberg, and J.D. Wasscher, J. Phys. Chem. Solids 24, 109 (1963).

    Article  Google Scholar 

  76. Y. Kajikawa, Phil. Mag. 100, 2018 (2020).

    Article  CAS  Google Scholar 

  77. B. Pődör, Semicond. Sci. Technol. 2, 177 (1987).

    Article  Google Scholar 

  78. J. Monecke, W. Siegel, E. Ziegler, and G. Kühnel, Phys. Stat. Sol. B 103, 269 (1981).

    Article  CAS  Google Scholar 

  79. F. Meinardi, A. Parisini, and L. Tarricone, Semicond. Sci. Technol. 8, 1985 (1993).

    Article  CAS  Google Scholar 

  80. W. Gotz, R.S. Kern, C.H. Chen, H. Liu, D.A. Steigerwald, and R.M. Fletcher, Mater. Sci. Eng. B 59, 211 (1999).

    Article  Google Scholar 

  81. O. Lopatiuk-Tirpak, W.V. Schoenfeld, L. Chernyak, F.X. Xiu, J.L. Liu, S. Jang, F. Ren, S.J. Pearton, A. Osinsky, and P. Chow, Appl. Phys. Lett. 88, 202110 (2006).

    Article  CAS  Google Scholar 

  82. L. Kasamakova-Kolaklieva, L. Storasta, I.G. Ivanov, B. Magnusson, S. Contreras, C. Consejo, J. Pernot, M. Zielinski, and E. Janzen, Mater. Sci. Forum 457–460, 677 (2004).

    Article  Google Scholar 

  83. A. Parisini and R. Nipoti, J. Appl. Phys. 114, 243703 (2013).

    Article  CAS  Google Scholar 

  84. H. Matsuura, K. Sugiyama, K. Nishikawa, T. Nagata, and N. Fukunaga, J. Appl. Phys. 94, 2234 (2003).

    Article  CAS  Google Scholar 

  85. M. Rambach, A.J. Bauer, and H. Ryssel, Phys. Stat. Sol. B 245, 1315 (2008).

    Article  CAS  Google Scholar 

  86. A. Nath, R. Scaburri, M.V. Rao, and R. Nipoti, Mater. Sci. Forum 717–720, 237 (2012).

    Article  CAS  Google Scholar 

  87. M. Spera, D. Corso, S. Di Franco, G. Greco, A. Severino, P. Fiorenza, F. Giannazzo, and F. Roccaforte, Mater. Sci. Semicond. Process. 93, 274 (2019).

    Article  CAS  Google Scholar 

  88. T. Holstein, Phys. Rev. 124, 1329 (1961).

    Article  Google Scholar 

  89. I.P. Kogutyuk, V.M. Nitsoich, and F.V. Skrypnik, Phys. Stat. Sol. B 99, 183 (1980).

    Article  CAS  Google Scholar 

  90. L. Bányai and A. Aldea, Phys. Rev. 143, 652 (1966).

    Article  Google Scholar 

  91. G. Wellenhofer and U. Rössler, Phys. Stat. Sol. B 202, 107 (1997).

    Article  CAS  Google Scholar 

  92. N.A. Poklonski, A.V. Denisenko, S.Y. Lopatin, and A.I. Siaglo, Phys. Stat. Sol. B 206, 713 (1998).

    Article  CAS  Google Scholar 

  93. N.A. Poklonski, S.A. Vyrko, V.I. Yatskevich, and A.A. Kocherzhenko, J. Appl. Phys. 93, 9749 (2003).

    Article  CAS  Google Scholar 

  94. J.R. Lowney and H.S. Bennett, J. Appl. Phys. 69, 7102 (1991).

    Article  CAS  Google Scholar 

  95. S. Abboudy, Int. J. Mod. Phys. B 10, 59 (1996).

    Article  Google Scholar 

  96. N.A. Poklonski, S.A. Vyrko, and A.G. Zabrodskii, Phys. Solid State 46, 1101 (2004).

    Article  CAS  Google Scholar 

  97. C. Persson, A.F. da Silva, and B. Johansson, Phys. Rev. B 63, 205119 (2001).

    Article  CAS  Google Scholar 

  98. T.N. Morgan, Phys. Rev. 139, A343 (1965).

    Article  Google Scholar 

  99. Y. Kajikawa, J. Appl. Phys. 114, 043719 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutomo Kajikawa.

Ethics declarations

Conflict of Interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculation Methods for Concentration, Mobility, and Hall Factor of Free Holes

Appendix: Calculation Methods for Concentration, Mobility, and Hall Factor of Free Holes

The concentration nv of free holes is calculated by \( n_{\rm v} = N_{\rm v} {\fancyscript{F}}_{1/2} \left( \eta \right) \), where \( N_{\rm v} = 2\left( {2\pi m_{\rm d} k_{\rm B} T/h^{2} } \right)^{3/2} \) is the effective DOS of the valence band, η is the reduced Fermi level with respect to the edge of the valence band, and \( {\fancyscript{F}}_j \left( \eta \right) \) is the normalized Fermi–Dirac integral of order j. In the present study, we use the temperature-dependent DOS effective masses, rather than the temperature-independent DOS effective masses, for free holes in p-type 4H-SiC, as in the study by Koizumi et al.71 The temperature-dependent DOS effective mass md(T) is defined as

$$ n_{\rm v} = 4\pi \left( {\frac{{2m_{d} (T)}}{{h^{2} }}} \right)^{3/2} \int_{0}^{\infty } {f(E,T)E^{1/2} {\text{d}}E} , $$
(4)

where f(E, T) is the Fermi–Dirac distribution function, and has been obtained by Wellenhofer and Rössler91 for 4H-SiC. We find that the temperature-dependent DOS effective mass obtained by Tanaka et al.57 can be approximated by \( m_{\rm d} \left( T \right) = 2.5m_{0} /\left[ {1 + \left( {24/T} \right)^{3/4} } \right] \) for p-type 4H-SiC in the temperature range between 100 K and 900 K.

Tanaka et al.57 proposed a model to calculate the Hall mobility μH and the drift mobility μd of p-type 4H-SiC and fit the calculated results to the experimental data on their almost noncompensated p-type 4H-SiC samples. Their model includes the effects of the anisotropic valence band structure and the anisotropic relaxation times. They showed that the drift mobility μd of almost noncompensated p-type 4H-SiC is dominated by acoustic and nonpolar optical phonon scattering at high temperatures while ionized impurity scattering has a negligible impact. Furthermore, through the fits to the temperature and acceptor density dependence of the mobility, they obtained empirical expressions for the drift mobility and Hall factor as

$$ \mu_{\rm d} (T,N_{\rm A} ) = \frac{{95\,{\text{cm}}^{2} /{\text{Vs}} \times \left( {\frac{T}{300\,\text{K}}} \right)^{ - 2.1} }}{{1 + \left( {\frac{T}{300\,\text{K}}} \right)^{ - 1.5} \left( {\frac{{N_{\rm A} }}{{1 \times 10^{19} \,\text{cm}^{ - 3} }}} \right)^{0.71} }} $$
(5)

and

$$ A_{{\rm Hv}} (T,N_{\rm A} ) = 1.16 \times \left( {\frac{T}{{300\,{\text{K}}}}} \right)^{ - 0.9} \times \frac{{1 + \left( {\frac{T}{{300\,{\text{K}}}}} \right)^{ - 1.5} \left( {\frac{{N_{\rm A} }}{{1 \times 10^{19} \,{\text{cm}}^{ - 3} }}} \right)^{0.7} }}{{1 + \left( {\frac{T}{{300\,{\text{K}}}}} \right)^{ - 1.8} \left( {\frac{{N_{\rm A} }}{{3 \times 10^{18} \,{\text{cm}}^{ - 3} }}} \right)^{0.6} }}, $$
(6)

respectively. The former expression agrees with both μH/AH and μHnH/nv calculated using their model within about \( \pm \)10% error in the range of 200 K to 700 K. At lower temperature, however, this expression slightly overestimates the mobility. Furthermore, they suggested that larger errors may arise for higher acceptor concentrations. They also noted that, in the case of highly compensated samples, this expression will require some modification to take account of the compensating donor concentration. Such errors at lower temperatures for higher acceptor concentrations as well as the modification required for the highly compensated case can arise from the effect of ionized impurity scattering.

In the present study, therefore, the effect of impurity scattering is explicitly included in order to calculate the drift mobility μv of free holes in moderately compensated heavily doped p-type 4H-SiC at low temperatures. Namely, the drift mobility μv is calculated as \( 1/\mu_{\rm v} = 1/\mu_{\text{phonon}} + 1/\mu_{\rm imp} \), where μphonon and μimp denote the lattice- and impurity-limited mobility, respectively. We regard μd(T, 0) as μphonon. The impurity-limited mobility is calculated as \( 1/\mu_{\rm imp} = 1/\mu_{\rm ii} + 1/\mu_{\rm ni} \), where μii and μni denote the mobility due to ionized- and neutral-impurity scattering, respectively.

Tanaka et al.57 calculated conductivity tensors and the drift mobility on the basis of the relaxation-time approximation. In Ref. 57, the relaxation time τii due to ionized-impurity scattering was calculated using the Brooks–Herring formula. Then, Tanaka et al.57 multiplied the relaxation time τii by a factor of 2 to take into account the p-type symmetry of wavefunctions in place of the s-type wavefunctions, while Pernot et al.36 as well as Koizumi et al.71 multiplied it by a factor of 3/2. However, Poklonski et al. showed that the Brooks–Herring formula overestimates the mobility (and thus the relaxation time τii) for p-type Si92 as well as for n-type InSb,93 even when the value is not multiplied. When using the Brooks–Herring formula to calculate the hole mobility, Lowney and Bennett94 preferred not to multiply τii by the overlap factor because of the relative strength of small-angle scattering and the fact that the overlap factor due to the p-wave nature of holes goes to unity for small angles. In the present study, therefore, the relaxation time τii due to ionized-impurity scattering is calculated using the Brooks–Herring formula without any multiplication, as in previous studies by the author on p-type materials.35,47

On the other hand, for the calculation of τii, we take into account the effect of the increase of the static dielectric constant at the insulator side of the MI transition. It has been shown both experimentally and theoretically that the static dielectric constant at low temperature increases with the impurity concentration to diverge at the critical net acceptor concentration NNAcr for the onset of the MI transition.95,96 According to Poklonski et al.,96 we assume the form

$$ \varepsilon_{\rm eff} (N_{\rm A}^{0} ) = \left( {\varepsilon_{\rm s} + 2{{N_{\rm A}^{0} } \mathord{\left/ {\vphantom {{N_{\rm A}^{0} } {N_{\rm NAcr} }}} \right. \kern-0pt} {N_{\rm NAcr} }}} \right)\left( {1 - {{N_{\rm A}^{0} } \mathord{\left/ {\vphantom {{N_{\rm A}^{0} } {N_{\rm NAcr} }}} \right. \kern-0pt} {N_{\rm NAcr} }}} \right)^{ - 1} . $$
(7)

Regarding the critical concentration for the MI transition in Al-doped p-type 4H-SiC, we adopt the value NNAcr = 2.1 × 1020 cm−3 according to Persson et al.,97 and calculate εeff according to Eq. 7.

In the calculation of the energy-dependent relaxation time τii(E) due to ionized-impurity scattering, Tanaka et al.57 as well as Koizumi et al.71 and Parisini et al.83 took into account not only screening due to free holes but also that due to hopping carriers98 when calculating the inverse screening length βs. (Note that there are nontrivial errors related to the Fermi–Dirac integral in Eq. A2 for βs in Ref. 83.) In the present study, however, only screening due to free holes is taken into account when calculating τii(E) of free holes without the effect of hopping carriers. To calculate the drift mobility, it is necessary to average τii(E) by the integral of E. The Brooks–Herring formula for τii(E) contains a factor \( B_{\rm ii} (b) = \ln (b + 1) - {b \mathord{\left/ {\vphantom {b {(b + 1)}}} \right. \kern-0pt} {(b + 1)}} \), where \( b = {{8m_{\rm d} E} \mathord{\left/ {\vphantom {{8m_{\rm d} E} {\left( {\hbar \beta_{\rm s} } \right)^{2} }}} \right. \kern-0pt} {\left( {\hbar \beta_{\rm s} } \right)^{2} }} \). Although the factor Bii(b) is a function of E, its dependence is slow. Owing to this, Bii(b) can be replaced before the integral of EdE by a constant value of Bii(bmax), where bmax represents the value of b at which the integral becomes maximum. One can calculate bmax as 99

$$ b_{\hbox{max} } = \frac{{4\pi \varepsilon_{\rm eff} (k_{\rm B} T)^{1/2} h}}{{e^{2} (2m_{\rm d} )^{1/2} }}\frac{5}{\sqrt \pi }{\fancyscript{F}}_{3/2} \left( \eta \right)/\left[ {{\fancyscript{F}}_{ - 1/2} \left( \eta \right){\fancyscript{F}}_{1/2} \left( \eta \right)} \right]. $$
(8)

Then, the drift mobility due to ionized-impurity scattering can be calculated as

$$ \mu_{\rm ii} = \frac{{\left( {4\pi \varepsilon_{\rm eff} } \right)^{2} (k_{\rm B} T)^{3/2} }}{{N_{\rm ii} \pi e^{3} (2m_{\rm d} )^{1/2} B_{\rm ii} (b_{\hbox{max} } )}}2{\fancyscript{F}}_{2} \left( \eta \right)/{\fancyscript{F}}_{1/2} \left( \eta \right). $$
(9)

The calculation of μni is performed according to Erginsoy’s model; Namely, it is calculated as

$$ \mu_{\rm ni} = \frac{e}{{20a_{\rm B} \hbar }}\frac{{{{m^{*} } \mathord{\left/ {\vphantom {{m^{*} } {m_{0} }}} \right. \kern-0pt} {m_{0} }}}}{{4\pi \varepsilon_{\rm eff} \varepsilon_{0} N_{\rm A}^{0} }}, $$
(10)

where \( a_{\rm B} = 4\pi \varepsilon_{\rm eff} \varepsilon_{0} \hbar^{2} /m^{*} e^{2} \) is the Bohr radius describing the bound hole at the neutral acceptor. Tanaka et al.57 treated the hole effective mass in Eq. 10 as an adjustable parameter which is independent of the DOS and conductivity effective masses, assuming it to be 1.0 × m0 to reproduce the experimental mobility at low temperatures and high concentrations of acceptors in p-type 4H-SiC. In the present study, the hole effective mass for the calculation using Eq. 10 is also assumed to be 1.0 × m0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajikawa, Y. Negative Hall Factor of Acceptor Impurity Hopping Conduction in p-Type 4H-SiC. J. Electron. Mater. 50, 1247–1259 (2021). https://doi.org/10.1007/s11664-020-08639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08639-0

Keywords

Navigation