Skip to main content
Log in

Effects of Initial Grain Size and Laser Parameters on HfO2 Nanoparticles Prepared Using Femtosecond Laser Ablation in Liquids

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The fabrication of an intriguing nano-fiber network interconnected to crystalline spherical shaped nanoparticles of HfO2 has been achieved by femtosecond (fs) pulsed laser ablation in liquids. Understanding the fundamental reasons behind the formation of such heterostructures is important to scale up such process for other varieties of electronic materials. The present work has been designed to verify the impact of initial grain size on the final heterostructures formed. The overall plasma density and its composition were varied since the laser interaction with the matter is affected by the initial grain/particle size. This work covers the effects of initial grain sizes on HfO2 hetero-nanomaterials formed by a controlled ball-milling process. The ablation was performed with fs laser pulses on HfO2 pellets with two different initial grain sizes in distilled water and ethanol. The formed nanoparticles (NPs) had a spherical shape along with an interesting nano-fiber-like structure. The NPs were found to be polycrystalline in nature, and the fiber-like structures were found to be amorphous in nature. Further, the formation of high-temperature and high-pressure phases of HfOx NPs (tetragonal/cubic HfOx) was observed along with a room-temperature phase (monoclinic HfO2). A combination of ball milling and ultrafast laser ablation appears to be a preferred method for synthesizing smaller NPs of exotic non-equilibrium phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Rewari, V. Nath, S. Haldar, S.S. Deswal, and R.S. Gupta, Microsyst. Technol. 25, 1527 (2019).

    Article  CAS  Google Scholar 

  2. M.A. Pugachevskii and V.I. Panfilov, Inorg. Mater. 50, 582 (2014).

    Article  CAS  Google Scholar 

  3. P.K. Park and S.W. Kang, Appl. Phys. Lett. 89, 17 (2006).

    Google Scholar 

  4. G. Vescio, J. López-Vidrier, R. Leghrib, A. Cornet, and A. Cirera, J. Mater. Chem. C 4, 1804 (2016).

    Article  CAS  Google Scholar 

  5. Y.C. Quan, J.E. Lee, H. Kang, Y. Roh, D. Jung, and C.W. Yang, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 41, 6904 (2002).

    Article  CAS  Google Scholar 

  6. N. Arun, K.V. Kumar, A. Mangababu, S.V.S.N. Rao, and A.P. Pathak, Radiat. Eff. Defects Solids 174, 66 (2019).

    Article  CAS  Google Scholar 

  7. N. Selvakumar, H.C. Barshilia, K.S. Rajam, and A. Biswas, Sol. Energy Mater. Sol. Cells 94, 1412 (2010).

    Article  CAS  Google Scholar 

  8. M. Al-Kuhaili, Opt. Mater. (Amst). 27, 383 (2004).

    Article  CAS  Google Scholar 

  9. M. Lee, A. Baraket, N. Zine, M. Zabala, F. Campabadal, N. Jaffrezic-renault, and A. Errachid, Sens. Transducers 27, 233 (2014).

    Google Scholar 

  10. X. Zhang, H. Tu, X. Wang, Y. Xiong, M. Yang, L. Wang, and J. Du, J. Cryst. Growth 312, 2928 (2010).

    Article  CAS  Google Scholar 

  11. B. Cojocaru, D. Avram, R. Negrea, C. Ghica, V.G. Kessler, G.A. Seisenbaeva, V.I. Parvulescu, and C. Tiseanu, ACS Omega 4, 8881 (2019).

    Article  CAS  Google Scholar 

  12. R. Manory, T. Mori, I. Shimizu, S. Miyake, and G. Kimmel, J. Vac. Sci. Technol. 20, 549 (2002).

    Article  CAS  Google Scholar 

  13. N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, S.S. Ray, and J.C. Ngila, Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  14. S. Petersen and S. Barcikowski, Adv. Funct. Mater. 19, 1167 (2009).

    Article  CAS  Google Scholar 

  15. L. Yang, P.W. May, L. Yin, J.A. Smith, and K.N. Rosser, J. Nanoparticle Res. 9, 1181 (2007).

    Article  CAS  Google Scholar 

  16. Z. Yan and D. Chrisey, J. Photochem. Photobiol. C Photochem. Rev. 13, 204 (2012).

    Article  CAS  Google Scholar 

  17. A.O. Kucherik, A.V. Osipov, S.M. Arakelian, S.V. Garnov, A.V. Povolotckaya, and S.V. Kutrovskaya, J. Phys. Conf. Ser. 1164, 012006 (2019).

    Article  CAS  Google Scholar 

  18. S. Hamad, G.K. Podagatlapalli, V.S. Vendamani, S.V.S.N. Rao, A.P. Pathak, S.P. Tewari, and S.V. Rao, J. Phys. Chem. C 118, 7139 (2014).

    Article  CAS  Google Scholar 

  19. V.S. Vendamani, S. Hamad, V. Saikiran, A.P. Pathak, S.V. Rao, V.V.R.K. Kumar, and S.V.S.N. Rao, J. Mater. Sci. 50, 1666 (2015).

    Article  CAS  Google Scholar 

  20. T.B. Nguyen, N.A. Nguyen, and G.L. Ngo, J. Electron. Mater. 49, 311 (2020).

    Article  CAS  Google Scholar 

  21. M. Rodio, A. Scarpellini, A. Diaspro, and R. Intartaglia, J. Mater. Chem. C 5, 12264 (2017).

    Article  CAS  Google Scholar 

  22. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G.A. Shafeev, Opt. Express 17, 12650 (2009).

    Article  CAS  Google Scholar 

  23. E. Popova-Kuznetsova, G. Tikhonowski, A.A. Popov, V. Duflot, S. Deyev, S. Klimentov, I. Zavestovskaya, P.N. Prasad, and A.V. Kabashin, Nanomaterials 10, 1 (2020).

    Google Scholar 

  24. P. Mirdha, B. Parthasarathy, J. Kondo, P. Chan, E. Heller, and F.C. Jain, J. Electron. Mater. 47, 1371 (2018).

    Article  CAS  Google Scholar 

  25. A. Bakhshandeh and S.A. Hosseini, J. Electron. Mater. 48, 5617 (2019).

    Article  CAS  Google Scholar 

  26. J. Roiz, A. Oliver, E. Muñoz, L. Rodriguez-Fernández, J.M. Hernández, and J.C. Cheang-Wong, J. Appl. Phys. 95, 1783 (2004).

    Article  CAS  Google Scholar 

  27. C. Byram and V.R. Soma, Nano-Struct. Nano-Objects 12, 121 (2017).

    Article  CAS  Google Scholar 

  28. M.S.S. Bharati, C. Byram, and V.R. Soma, Front. Phys. 6, 28 (2018).

    Article  Google Scholar 

  29. S.S.B. Moram, C. Byram, and V.R. Soma, Bull. Mater. Sci. 43, 53 (2020).

    Article  CAS  Google Scholar 

  30. N.Y. Yashina, A.J.K. Al-Alwani, O.Y. Tsvetkova, A.S. Kolesnikova, E.G. Glukhovskoy, and V.P. Sevostyanov, J. Phys. Conf. Ser. 1124, 022020 (2018).

    Article  CAS  Google Scholar 

  31. W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, and S. Nie, Curr. Opin. Biotechnol. 13, 40 (2002).

    Article  CAS  Google Scholar 

  32. A. Gautam and F.C.J.M. van Veggel, J. Mater. Chem. B 1, 5186 (2013).

    Article  CAS  Google Scholar 

  33. Y. Xing and J. Rao, Cancer Biomarkers 4, 307 (2008).

    Article  CAS  Google Scholar 

  34. J.S. Daubert, G.T. Hill, H.N. Gotsch, A.P. Gremaud, J.S. Ovental, P.S. Williams, C.J. Oldham, and G.N. Parsons, ACS Appl. Mater. Interfaces 9, 4192 (2017).

    Article  CAS  Google Scholar 

  35. S. Vyas and J. Matthey, Technol. Rev. 64, 202 (2019).

    Google Scholar 

  36. S. Wang, Y. Zou, Q. Shan, J. Xue, Y. Dong, Y. Gu, and J. Song, RSC Adv. 8, 33666 (2018).

    Article  CAS  Google Scholar 

  37. B.K. Das, S.K. Verma, T. Das, P.K. Panda, K. Parashar, M. Suar, and S.K.S. Parashar, Chem. Biol. Interact. 297, 141 (2019).

    Article  CAS  Google Scholar 

  38. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, A.V. Anupama, and B. Sahoo, Electron. Mater. Lett. 16, 255 (2020).

    Article  CAS  Google Scholar 

  39. T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).

    Article  CAS  Google Scholar 

  40. Y. Zhang, H.L. Lu, T. Wang, Q.H. Ren, Y.Z. Gu, D.H. Li, and D.W. Zhang, Nanoscale 7, 15462 (2015).

    Article  CAS  Google Scholar 

  41. A. Borowiec, M. Mackenzie, G.C. Weatherly, and H.K. Haugen, Appl. Phys. A Mater. Sci. Process. 77, 411 (2003).

    Article  CAS  Google Scholar 

  42. T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, and T. Niemi, Opt. Mater. Express 2, 799 (2012).

    Article  CAS  Google Scholar 

  43. S. Bayda, M. Hadla, S. Palazzolo, P. Riello, G. Corona, G. Toffoli, and F. Rizzolio, Curr. Med. Chem. 25, 4269 (2017).

    Article  CAS  Google Scholar 

  44. M. Lee, N. Zine, A. Baraket, M. Zabala, F. Campabadal, R. Caruso, M.G. Trivella, N. Jaffrezic-Renault, and A. Errachid, Sens. Actuators B Chem. 175, 201 (2012).

    Article  CAS  Google Scholar 

  45. M. Lee, N. Zine, A. Baraket, M. Zabala, F. Campabadal, M.G. Trivella, N. Jaffrezic-Renault, and A. Errachid, Procedia Eng. 25, 972 (2011).

    Article  CAS  Google Scholar 

  46. V. Jayaraman, G. Bhavesh, S. Chinnathambi, S. Ganesan, and P. Aruna, Mater. Express 4, 375 (2014).

    Article  CAS  Google Scholar 

  47. G.S. Chaubey, Y. Yao, J.P.A. Makongo, P. Sahoo, D. Misra, P.F.P. Poudeu, and J.B. Wiley, RSC Adv. 2, 9207 (2012).

    Article  CAS  Google Scholar 

  48. P.P. Rejith, S. Vidya, V.S. Solomon, and J.K. Thomas, Phys. Status Solidi B 251, 809 (2014).

    Article  CAS  Google Scholar 

  49. N.N.M. Yusuf, M.M.A. Kechik, H. Baqiah, C.S. Kien, L.K. Pah, A.H. Shaari, W.N.W.W. Jusoh, S.I.A. Sukor, M.M. Dihom, Z.A. Talib, and R. Abd-Shukor, Materials (Basel). 12, 6 (2019).

    Article  CAS  Google Scholar 

  50. Y. Al-Khatatbeh, K.K.M. Lee, and B. Kiefer, Phys. Rev. B Condens. Matter Mater. Phys. 82, 1 (2010).

    Article  CAS  Google Scholar 

  51. L. Bayarjargal, W. Morgenroth, N. Schrodt, B. Winkler, V. Milman, C.R. Stanek, and B.P. Uberuaga, High Press. Res. 37, 147 (2017).

    Article  CAS  Google Scholar 

  52. P. Blaise and B. Traore, ArXiv:1511.07665v17, 1 (2015).

  53. P. Rauwel, E. Rauwel, C. Persson, M.F. Sunding, and A. Galeckas, J. Appl. Phys. 112, 104107 (2012).

    Article  CAS  Google Scholar 

  54. J.C. Pravin, P. Prajoon, F.P. Nesamania, G. Srikesh, P.S. Kumar, and D. Nirmal, J. Electron. Mater. 47, 2679 (2018).

    Article  CAS  Google Scholar 

  55. V. Jayaraman, S. Sagadevan, and R. Sudhakar, J. Electron. Mater. 46, 4392 (2017).

    Article  CAS  Google Scholar 

  56. D. Maheswari and P. Venkatachalam, J. Electron. Mater. 44, 967 (2015).

    Article  CAS  Google Scholar 

  57. R.K. Jha, P. Singh, M. Goswami, and B.R. Singh, J. Electron. Mater. 49, 1445 (2020).

    Article  CAS  Google Scholar 

  58. G. Bonizzoni and E. Vassallo, Vacuum 64, 327 (2002).

    Article  CAS  Google Scholar 

  59. D. Czajczyńska, L. Anguilano, H. Ghazal, R. Krzyżyńska, A.J. Reynolds, N. Spencer, and H. Jouhara, Therm. Sci. Eng. Prog. 3, 171 (2017).

    Article  Google Scholar 

  60. G.W. Yang, Prog. Mater Sci. 52, 648 (2007).

    Article  CAS  Google Scholar 

  61. H.P. Kumar, S. Vidya, S.S. Kumar, C. Vijayakumar, S. Solomon, and J.K. Thomas, J. Asian Ceram. Soc. 3, 64 (2015).

    Article  Google Scholar 

  62. S.A. Eliziário, L.S. Cavalcante, J.C. Sczancoski, P.S. Pizani, J.A. Varela, J.W.M. Espinosa, and E. Longo, Nanoscale Res. Lett. 4, 1371 (2009).

    Article  CAS  Google Scholar 

  63. A. Ramadoss and S.J. Kim, J. Alloys Compd. 544, 115 (2012).

    Article  CAS  Google Scholar 

  64. H. Huang, J. Lai, J. Lu, and Z. Li, AIP Adv. 9, 015307 (2019).

    Article  CAS  Google Scholar 

  65. M. Dhanunjaya, C. Byram, V.S. Vendamani, S.V. Rao, A.P. Pathak, and S.V.S.N. Rao, Appl. Phys. A Mater. Sci. Process. 125, 74 (2019).

    Article  CAS  Google Scholar 

  66. M.N. Rahaman, J. Mater. Res. 8, 1680 (1993).

    Article  Google Scholar 

  67. A.L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  68. V.S. Vendamani, A. Tripathi, A.P. Pathak, S.V. Rao, and A. Tiwari, Mater. Lett. 192, 29 (2017).

    Article  CAS  Google Scholar 

  69. O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, and R. Snyders, Laser Phys. 23, 055901 (2013).

    Article  CAS  Google Scholar 

  70. T.X. Phuoc, J. Mater. Sci. Nanotechnol. 1, 1 (2014).

    Google Scholar 

  71. H. He, W. Cai, Y. Lin, and B. Chen, Chem. Commun. 46, 7223 (2010).

    Article  CAS  Google Scholar 

  72. Y. Wan and X. Zhou, RSC Adv. 7, 7763 (2017).

    Article  CAS  Google Scholar 

  73. R. Wu, B. Zhou, Q. Li, Z. Jiang, W. Wang, W. Ma, and X. Zhang, J. Phys. D Appl. Phys. 45, 125304 (2012).

    Article  CAS  Google Scholar 

  74. B. Zhou, H. Shi, X.D. Zhang, Q. Su, and Z.Y. Jiang, J. Phys. D. Appl. Phys. 47, 58 (2014).

    Google Scholar 

  75. X. Zhao and D. Vanderbilt, Phys. Rev. B Condens. Matter Mater. Phys. 65, 1 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Nageswara Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangababu, A., Sianglam, C., Chandu, B. et al. Effects of Initial Grain Size and Laser Parameters on HfO2 Nanoparticles Prepared Using Femtosecond Laser Ablation in Liquids. J. Electron. Mater. 50, 1742–1751 (2021). https://doi.org/10.1007/s11664-020-08610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08610-z

Keywords

Navigation