Skip to main content
Log in

Nanoscale High-k Dielectrics for Junctionless Nanowire Transistor for Drain Current Analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hafnium oxide (HfO2) nanoparticles were prepared by a chemical precipitation method and its physical and electrical properties were investigated. HfO2 thin films were prepared via a dip-coating method using the synthesized HfO2 nanoparticles. The crystallinity and resistivity of both prepared thin films were analysed by x-ray diffraction and impedance analyser. The crystalline size was found to be 8 nm and 13 nm for HfO2 and SiO2 thin films, respectively. The electrical (bulk) resistance was calculated by fitting the complex impedance plane using z-view software, and was found to be 2.15 × 107 Ω for HfO2, whereas it was found to be 3.6 × 105 Ω for SiO2 thin films. Junctionless nanowire transistors were implemented using HfO2 dielectric and performance was compared to SiO2 gate dielectric. The results revealed that nano-sized HfO2 proves to be a better gate dielectric material than conventional gate dielectrics. Thus, the nano-sized HfO2 based junctionless transistor device is more suitable for future low power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Nirmal, B. Nalini, and P. Vijayakumar, Integr. Ferroelectr. 121, 31 (2010).

    Article  Google Scholar 

  2. H. Ohta, A. Nagashima, M. Ito, M. Hori, and T. Goto, J. Vac. Sci. Technol. B 18, 2486 (2000).

    Article  Google Scholar 

  3. W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, Nano Lett. 10, 3572 (2010).

    Article  Google Scholar 

  4. K.Y. Gao, Th Seyller, L. Ley, F. Ciobanu, G. Pensl, A. Tadich, J.D. Riley, and R.G.C. Leckey, Appl. Phys. Lett. 83, 1830 (2003).

    Article  Google Scholar 

  5. Y. Xuan, Y.Q. Wu, H.C. Lin, T. Shen, and D.Y. Peide, IEEE Electron Device Lett. 28, 935 (2007).

    Article  Google Scholar 

  6. A. Ramadoss, K. Krishnamoorthy, and S.J. Kim, Mater. Lett. 75, 215 (2012).

    Article  Google Scholar 

  7. M. Vargas, N.R. Murphy, and C.V. Ramana, Opt. Mater. 37, 621 (2014).

    Article  Google Scholar 

  8. X. Luo, W. Zhou, S.V. Ushakov, A. Navrotsky, and A.A. Demkov, Phys. Rev. B 80, 134119 (2009).

    Article  Google Scholar 

  9. A.J. Waldorf, J.A. Dobrowolski, B.T. Sullivan, and L.M. Plante, Appl. Opt. 32, 5583 (1993).

    Article  Google Scholar 

  10. M.F. Al-Kuhaili, S.M.A. Durrani, and E.E. Khawaja, J. Phys. D 37, 1254 (2004).

    Article  Google Scholar 

  11. S.A. Eliziario, L.S. Cavalcante, J.C. Sczancoski, P.S. Pizani, J.A. Varela, J.W.M. Espinosa, and E. Longo, Nanoscale Res. Lett. 4, 1371 (2009).

    Article  Google Scholar 

  12. P.E. Meskin, F.Y. Sharikov, V.K. Ivanov, B.R. Churagulov, and Y.D. Tretyakov, Mater. Chem. Phys. 104, 439 (2007).

    Article  Google Scholar 

  13. G. Srikesh and A.S. Nesaraj, Ceram. Int. 42, 5001 (2016).

    Article  Google Scholar 

  14. G. Ramadoss and G. Srikesh, J. Alloys Compd. 544, 115 (2012).

    Article  Google Scholar 

  15. D.A. Neumayer and E. Cartier, J. Appl. Phys. 90, 1801 (2001).

    Article  Google Scholar 

  16. P. Senthil Kumar, A. Sakunthala, M. Prabu, M.V. Reddy, and R. Joshi, Solid State Ion. 267, 1 (2014).

    Article  Google Scholar 

  17. X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Chem. Commun. 47, 3141 (2011).

    Article  Google Scholar 

  18. G. Hu, P. Xiang, Z. Ding, R. Liu, L. Wang, and T.-A. Tang, IEEE Trans. Electron Devices 61, 688 (2014).

    Article  Google Scholar 

  19. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, and I. Ferain, Nat. Nanotechnol. 5, 225 (2010).

    Article  Google Scholar 

  20. H. Lou, L. Zhang, Y. Zhu, X. Lin, S. Yang, J. He, and M. Chan, IEEE Trans Electron Devices 59, 1829 (2012).

    Article  Google Scholar 

  21. J.C. Pravin, D. Nirmal, P. Prajoon, and M.A. Menokey, IEEE Trans Electron Devices 63, 3782 (2016).

    Article  Google Scholar 

  22. N. MohanKumar, B. Syamal, and C.K. Sarkar, IEEE Trans Electron Device 57, 820 (2010).

    Article  Google Scholar 

  23. A. Bouazra, S. Abdi-Ben Nasrallah, M. Said, and A. Poncet, Res. Lett. Phys. 2008, 1 (2008).

    Article  Google Scholar 

  24. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    Article  Google Scholar 

  25. C.R. Manoj and V.R. Rao, IEEE Electron Device Lett. 28, 295 (2007).

    Article  Google Scholar 

  26. J. Ajayan and D. Nirmal, Superlattices Microstruct. 86, 1 (2015).

    Article  Google Scholar 

  27. D. Nirmal, P. Vijayakumar, D.M. Thomas, B.K. Jebalin, and N. Mohankumar, Microelectron. Reliab. 53, 499 (2013).

    Article  Google Scholar 

  28. J. Charles Pravin, D. Nirmal, P. Prajoon, and J. Ajayan, Phys. E. 83, 95 (2016).

    Article  Google Scholar 

  29. T.V. Perevalov, M.V. Ivanov, and V.A. Gritsenko, Microelectron. Eng. 88, 1475 (2011).

    Article  Google Scholar 

  30. J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).

    Article  Google Scholar 

  31. N.V. Nguyen, A.V. Davydov, and D. Chandler-Horowitz, Appl. Phys. Lett. 87, 192903 (2005).

    Article  Google Scholar 

  32. J.L. Alay and M. Hirose, J. Appl. Phys. 81, 1606 (1997).

    Article  Google Scholar 

  33. S. Sayan, E. Garfunkel, and S. Suzer, Appl. Phys. Lett. 80, 2135 (2002).

    Article  Google Scholar 

  34. H. Malitson, JOSA 55, 1205 (1965).

    Article  Google Scholar 

  35. M. Jerman, Z. Qiao, and D. Mergel, Appl. Opt. 44, 3006 (2005).

    Article  Google Scholar 

  36. D. Nirmal, P. Vijayakumar, P.P.C. Samuel, B.K. Jebalin, and N. Mohankumar, Int. J. Electron. 100, 803 (2013).

    Article  Google Scholar 

  37. M. El-Shahat and H. Anis, J. Adv. Res. 5, 569 (2014).

    Article  Google Scholar 

  38. B.N. Dash, P. Dash, R. Biswal, and N.C. Mishra, J. Comput. Theor. Nanosci. 20, 601 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nirmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravin, J.C., Prajoon, P., Nesamania, F.P. et al. Nanoscale High-k Dielectrics for Junctionless Nanowire Transistor for Drain Current Analysis. J. Electron. Mater. 47, 2679–2686 (2018). https://doi.org/10.1007/s11664-018-6075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6075-2

Keywords

Navigation