Skip to main content
Log in

Characteristics of 21H-SiC Thin Film-Based Schottky Barrier Diodes Using TiN Contacts

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The fabrication of Schottky barrier diodes based on thin films of 21H polytype of SiC is reported. The films were deposited using a single composite target of Si and graphite by magnetron sputtering. The formation of the 21H polytype of SiC was confirmed by x-ray diffraction. The devices were fabricated on single-crystal Si substrates, and electrical properties with TiN and Au/TiN as top lateral contacts were investigated. The rectifying nature, temperature (in the range 300–423 K), and top electrode work function dependence of Schottky parameters were investigated. The room-temperature turn-on voltages for the TiN and Au/TiN top contacts were 8.9 V and 12.8 V, respectively. The ideality factor decreased while the barrier height increased with an increase in temperature. The barrier height for different temperatures was in the range of 1.16–0.82 eV and 0.9–0.77 eV for TiN and Au/TiN interfaces with SiC, respectively. The presence of TiCxNy on the surface of the TiN-SiC-Si-Au device at high temperatures observed using Raman spectroscopy revealed the inhomogeneity due to variation in local interfacial structure. It was demonstrated that the 21H-SiC-based thin film Schottky barrier diodes are a promising alternative for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).

    Google Scholar 

  2. P. Friedrichs, Phys. Status Solidi 245, 1232 (2008).

    Article  CAS  Google Scholar 

  3. F. Iacopi, M. Van Hove, M. Charles, and K. Endo, MRS Bull. 40, 390 (2015).

    Article  CAS  Google Scholar 

  4. A. Elasser and T.P. Chow, Proc. IEEE 90, 969 (2002).

    Article  CAS  Google Scholar 

  5. A. Itoh and H. Matsunami, Phys. Status Solidi Appl. Res. 162, 389 (1997).

    Article  CAS  Google Scholar 

  6. E. Omotoso, F.D. Auret, E. Igumbor, S.M. Tunhuma, H.T. Danga, P.N.M. Ngoepe, B.A. Taleatu, and W.E. Meyer, Appl. Phys. A Mater. Sci. Process. 124, 395 (2018).

    Article  CAS  Google Scholar 

  7. G.S. Chung, K.S. Kim, and F. Yakuphanoglu, J. Alloys Compd. 507, 508 (2010).

    Article  CAS  Google Scholar 

  8. G.S. Chung and J.H. Ahn, Microelectron. Eng. 85, 1772 (2008).

    Article  CAS  Google Scholar 

  9. K.S. Kim and G.S. Chung, Sensors Actuators B Chem. 160, 1232 (2011).

    Article  CAS  Google Scholar 

  10. J.A. Edmond, J. Electrochem. Soc. 135, 359 (1988).

    Article  CAS  Google Scholar 

  11. V.E. Gora, A. Chawanda, C. Nyamhere, F.D. Auret, F. Mazunga, T. Jaure, B. Chibaya, E. Omotoso, H.T. Danga, and S.M. Tunhuma, Phys. B Condens. Matter 535, 333 (2018).

    Article  CAS  Google Scholar 

  12. L.M. Porter and R.F. Davies, Mater. Sci. Eng. B B34, 83 (1995).

    Article  CAS  Google Scholar 

  13. L. Hultman, H. Ljungcrantz, C. Hallin, E. Janzén, J.E. Sundgren, B. Pécz, and L.R. Wallenberg, J. Mater. Res. 11, 2458 (1996).

    Article  CAS  Google Scholar 

  14. S. DelaCruz, Z. Wang, P. Cheng, C. Carraro, and R. Maboudian, Thin Solid Films 670, 54 (2019).

    Article  CAS  Google Scholar 

  15. A.A. Iliadis, S.N. Andronescu, K. Edinger, J.H. Orloff, R.D. Vispute, V. Talyansky, R.P. Sharma, T. Venkatesan, M.C. Wood, and K.A. Jones, Appl. Phys. Lett. 73, 3545 (1998).

    Article  CAS  Google Scholar 

  16. A.D. Pogrebnjak, V.I. Ivashchenko, P.L. Skrynskyy, O.V. Bondar, P. Konarski, K. Załęski, S. Jurga, and E. Coy, Compos. Part B Eng. 142, 85 (2018).

    Article  CAS  Google Scholar 

  17. Z. Wang, X. Wang, W. Liu, X. Ji, and C. Wang, Ceram. Int. 46, 7142 (2020).

    Article  CAS  Google Scholar 

  18. V.I. Ivashchenko, S. Veprek, P.E.A. Turchi, and V.I. Shevchenko, Phys. Rev. B Condens. Matter Mater. Phys. 86, 014110 (2012).

    Article  CAS  Google Scholar 

  19. R.C. Glass, L.M. Spellman, S. Tanaka, and R.F. Davis, J. Vac. Sci. Technol. A Vacuum Surfaces Film. 10, 1625 (1992).

    Article  CAS  Google Scholar 

  20. F. Yigiterol, H.H. Gullu, and E.D. Yildiz, Bull. Mater. Sci. 41, 66 (2018).

    Article  CAS  Google Scholar 

  21. V.E. Gora, F.D. Auret, H.T. Danga, S.M. Tunhuma, C. Nyamhere, E. Igumbor, and A. Chawanda, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 247, 114370 (2019).

    Article  CAS  Google Scholar 

  22. A. Sefaoǧlu, S. Duman, S. Doǧan, B. Gürbulak, S. Tüzemen, and A. Türüt, Microelectron. Eng. 85, 631 (2008).

    Article  CAS  Google Scholar 

  23. K. Zeghdar, L. Dehimi, F. Pezzimenti, M.L. Megherbi, and F.G. Dellacorte, J. Electron. Mater. 49, 1322 (2020).

    Article  CAS  Google Scholar 

  24. P.C. Akshara, G. Rajaram, and M.G. Krishna, Mater. Res. Express 5, 036410 (2018).

    Article  CAS  Google Scholar 

  25. K. Vasu, M.G. Krishna, and K.A. Padmanabhan, J. Mater. Sci. 47, 3522 (2012).

    Article  CAS  Google Scholar 

  26. M.S.R.N. Kiran, M. Ghanashyamkrishna, and K.A. Padmanabhan, Solid State Commun. 151, 561 (2011).

    Article  CAS  Google Scholar 

  27. S.J. Chang, C.H. Chen, Y.K. Su, J.K. Sheu, W.C. Lai, J.M. Tsai, C.H. Liu, and S.C. Chen, IEEE Electron Device Lett. 24, 129 (2003).

    Article  CAS  Google Scholar 

  28. V. Khemka, R. Patel, T.P. Chow, and R.J. Gutmann, Solid. State. Electron. 43, 1945 (1999).

    Article  CAS  Google Scholar 

  29. M. Genut and M. Eizenberg, Appl. Phys. Lett. 53, 672 (1988).

    Article  CAS  Google Scholar 

  30. L. Magafas, N. Georgoulas, and A. Thanailakis, Microelectronics J. 28, 107 (1997).

    Article  CAS  Google Scholar 

  31. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  CAS  Google Scholar 

  32. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  CAS  Google Scholar 

  33. S. Sankar Naik and V. Rajagopal Reddy, Adv. Mater. Lett. 3, 188 (2012).

    Article  CAS  Google Scholar 

  34. K. Ç. Demir, C. Coşkun, S. V Kurudirek, S. Öz, Aydoǧan, and M. Biber, in J. Phys. Conf. Ser. (2016), p. 012023

  35. N. Kaymak, E. Efil, E. Seven, A. Tataroǧlu, S. Bilge, and E. Oz Orhan, Mater. Res. Express 6, 026309 (2019).

    Article  CAS  Google Scholar 

  36. S.K. Lee, C.M. Zetterling, and M. Östling, J. Appl. Phys. 87, 8039 (2000).

    Article  CAS  Google Scholar 

  37. F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, and E. Zanoni, J. Appl. Phys. 93, 9137 (2003).

    Article  CAS  Google Scholar 

  38. I. Jyothi, H.-D. Yang, K.-H. Shim, V. Janardhanam, S.-M. Kang, H. Hong, and C.-J. Choi, Mater. Trans. 54, 1655 (2013).

    Article  CAS  Google Scholar 

  39. K.-H. Shim, C.-J. Choi, V. Janardhanam, H. Hong, H.-D. Yang, I. Jyothi, and S.-M. Kang, Mater. Trans. 54, 1655 (2013).

    Article  CAS  Google Scholar 

  40. R.T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  CAS  Google Scholar 

  41. J.H. Werner and H.H. Güttler, J. Appl. Phys. 73, 1315 (1993).

    Article  CAS  Google Scholar 

  42. S.-K. Lee, C.-M. Zetterling, and M. Östling, J. Electron. Mater. 30, 242 (2001).

    Article  CAS  Google Scholar 

  43. T. Güzel, A.K. Bilgili, and M. Özer, Superlattices Microstruct. 124, 30 (2018).

    Article  CAS  Google Scholar 

  44. H. Cetin and E. Ayyildiz, Semicond. Sci. Technol. 20, 625 (2005).

    Article  CAS  Google Scholar 

  45. S. Chand and J. Kumar, J. Appl. Phys. 80, 288 (1998).

    Article  Google Scholar 

  46. S. Duman, B. Gurbulak, and A. Turut, Appl. Surf. Sci. 253, 3899 (2007).

    Article  CAS  Google Scholar 

  47. N. Tuǧluoǧlu, S. Karadeniz, M. Şahin, and H. Şafak, Semicond. Sci. Technol. 19, 1092 (2004).

    Article  CAS  Google Scholar 

  48. R. Yatskiv, S. Tiagulskyi, and J. Grym, J. Electron. Mater. 49, 5133 (2020).

    Article  CAS  Google Scholar 

  49. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, and M. Willander, J. Appl. Phys. 113, 234509 (2013).

    Article  CAS  Google Scholar 

  50. V. Mikhelashvili, G. Eisenstein, and R. Uzdin, Solid. State. Electron. 45, 143 (2001).

    Article  CAS  Google Scholar 

  51. H.M.J. Al-Taii, Y.M. Amin, and V. Periasamy, Sensors (Switzerland) 15, 4810 (2015).

    Article  CAS  Google Scholar 

  52. M. Wittmer, Phys. Rev. B 42, 5249 (1990).

    Article  CAS  Google Scholar 

  53. R. Pérez, N. Mestres, J. Montserrat, D. Tournier, and P. Godignon, Phys. Status Solidi Appl. Mater. Sci. 202, 692 (2005).

    Article  CAS  Google Scholar 

  54. M. Biber, Phys. B Condens. Matter 325, 138 (2003).

    Article  CAS  Google Scholar 

  55. Y.Y. Kudryk, V.V. Shynkarenko, V.S. Slipokurov, R.I. Bigun, and R.Y. Kudryk, Semicond. Phys. Quantum Electron. Optoelectron. 17, 398 (2014).

    Article  CAS  Google Scholar 

  56. A.F. Hamida, Z. Ouennoughi, A. Sellai, R. Weiss, and H. Ryssel, Semicond. Sci. Technol. 23, 045005 (2008).

    Article  CAS  Google Scholar 

  57. B.L. Smith and E.H. Rhoderick, Solid State Electron. 14, 71 (1971).

    Article  Google Scholar 

  58. M. Kadoshima, T. Matsuki, S. Miyazaki, K. Shiraishi, C. Chikyo, K. Yamada, T. Aoyama, Y. Nara, and Y. Ohji, IEEE Electron Device Lett. 30, 466 (2009).

    Article  CAS  Google Scholar 

  59. S.A. Vitale, J. Kedzierski, P. Healey, P.W. Wyatt, and C.L. Keast, IEEE Trans. Electron Devices 58, 419 (2011).

    Article  CAS  Google Scholar 

  60. J. Pelletier, D. Gervais, and C. Pomot, J. Appl. Phys. 55, 994 (1984).

    Article  CAS  Google Scholar 

  61. R. Lewandków, M. Grodzicki, P. Mazur, and A. Ciszewski, Vacuum 177, 109345 (2020).

    Article  CAS  Google Scholar 

  62. J.B. Casady and R.W. Johnson, Solid. State. Electron. 39, 1409 (1996).

    Article  Google Scholar 

  63. R.T. Tung, Appl. Phys. Rev. 1, 011304 (2014).

    Article  CAS  Google Scholar 

  64. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  CAS  Google Scholar 

  65. P.M. Gammon, A. Ṕrez-Tomás, V.A. Shah, G.J. Roberts, M.R. Jennings, J.A. Covington, and P.A. Mawby, J. Appl. Phys. 106, 093708 (2009).

    Article  CAS  Google Scholar 

  66. M.E. Aydin, N. Yildirim, and A. Türüt, J. Appl. Phys. 102, 043701 (2007).

    Article  CAS  Google Scholar 

  67. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflère, and F. Cardon, Solid State Electron. 29, 633 (1986).

    Article  CAS  Google Scholar 

  68. W. Mtangi, F.D. Auret, C. Nyamhere, P.J. Janse van Rensburg, A. Chawanda, and M. Diale, Phys. B Condens. Matter 404, 1092 (2009).

    Article  CAS  Google Scholar 

  69. Ş Aydoǧan, M. Saǧlam, and A. Türüt, Appl. Surf. Sci. 250, 43 (2005).

    Article  CAS  Google Scholar 

  70. M.K. Hudait and S.B. Krupanidhi, Phys. B Condens. Matter 307, 125 (2001).

    Article  CAS  Google Scholar 

  71. S. Chand and J. Kumar, Appl. Phys. A Mater. Sci. Process. 63, 171 (1996).

    Google Scholar 

  72. R. Hackam and P. Harrop, IEEE Trans. Electron Devices 19, 1231 (1972).

    Article  CAS  Google Scholar 

  73. K. Shenai and R.W. Dutton, IEEE Trans. Electron Devices 35, 468 (1988).

    Article  Google Scholar 

  74. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  75. N. Saoula, N. Madaoui, R. Tadjine, R.M. Erasmus, S. Shrivastava, and J.D. Comins, Thin Solid Films 616, 521 (2016).

    Article  CAS  Google Scholar 

  76. Y.H. Cheng, B.K. Tay, S.P. Lau, H. Kupfer, and F. Richter, J. Appl. Phys. 92, 1845 (2002).

    Article  CAS  Google Scholar 

  77. S. Louring, N.D. Madsen, M. Sillassen, A.N. Berthelsen, B.H. Christensen, K.P. Almtoft, H. Ronkainen, L.P. Nielsen, and J. Bøttiger, Surf. Coatings Technol. 245, 40 (2014).

    Article  CAS  Google Scholar 

  78. N.A. Papanicolaou, A. Christou, and M.L. Gipe, J. Appl. Phys. 65, 3526 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Facilities and support provided by the Centre for Nanotechnology and CASEST, School of Physics under the UGC-DRS, UGC-UPE, UGC-NRC, and DST-PURSE programs for this work are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poreddy Chaitanya Akshara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshara, P.C., Rajaram, G. & Krishna, M.G. Characteristics of 21H-SiC Thin Film-Based Schottky Barrier Diodes Using TiN Contacts. J. Electron. Mater. 50, 1412–1424 (2021). https://doi.org/10.1007/s11664-020-08597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08597-7

Keywords

Navigation