Skip to main content
Log in

Analysis of the Electrical Characteristics of Mo/4H-SiC Schottky Barrier Diodes for Temperature-Sensing Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The experimental forward current–voltage–temperature (IDVDT) characteristics of Mo/4H-SiC Schottky barrier diodes are investigated by means of a careful simulation study. The simulations are in excellent agreement with measurements in the whole explored current range extending over ten orders of magnitude for temperatures from 303 K to 498 K. The diode ideality factor tends to decrease while the Schottky barrier height increases with increasing temperature. These variations are explained on the basis of the thermionic emission theory with a Gaussian distribution of the barrier height around the Mo/4H-SiC interface. The calculated Richardson constant is A* = 155.78 A cm−2 K−2 which is very close to the theoretical value of 146 A cm−2 K−2 expected for n-type 4H-SiC. The linear dependence of VD on temperature is also investigated for several bias currents. The obtained results reveal that the device is well suited for temperature-sensing applications, showing a good coefficient of determination (R2 = 0.99974 for 100 nA ≤ ID ≤ 1 mA) and a high sensitivity (S = 1.92 mV K−1 for ID = 1 μA). The temperature error between the voltage measurements and their linear best fit is lower than 1.5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.G. Della Corte, G. De Martino, F. Pezzimenti, G. Adinolfi, and G. Graditi, IEEE Trans. Electron Dev. 65, 3352 (2018).

    CAS  Google Scholar 

  2. A. Leon-Masich, H. Valderrama-Blavi, J.M. Bosque-Moncusi, and L. Martinez-Salamero, IEEE Trans. Power Electron. 31, 1633 (2015).

    Google Scholar 

  3. H. Bencherif, L. Dehimi, F. Pezzimenti, and F.G. Della Corte, Appl. Phys. A Mater. 125, 294 (2019).

    CAS  Google Scholar 

  4. G. De Martino, F. Pezzimenti, and F.G. Della Corte, in Proceedings of the International Semiconductor ConferenceCAS (2018), pp. 147–150.

  5. J. Fabre, P. Ladoux, and M. Piton, IEEE Trans. Power Electron. 30, 4079 (2014).

    Google Scholar 

  6. F. Pezzimenti, S. Bellone, F.G. Della Corte, and R. Nipoti, Mater. Sci. Forum 740, 942 (2013).

    Google Scholar 

  7. H. Bencherif, L. Dehimi, F. Pezzimenti, G. De Martino, and F.G. Della Corte, J. Electron. Mater. 48, 3871 (2019).

    CAS  Google Scholar 

  8. M. Mansoor, I. Haneef, S. Akhtar, A. De Luca, and F. Udrea, Sens. Actuators A Phys. 232, 63 (2015).

    CAS  Google Scholar 

  9. S. Rao, G. Pangallo, F. Pezzimenti, and F.G. Della Corte, IEEE Electron Dev. Lett. 36, 720 (2015).

    CAS  Google Scholar 

  10. F. Bouzid, L. Dehimi, and F. Pezzimenti, J. Electron. Mater. 46, 6563 (2017).

    CAS  Google Scholar 

  11. G. Pristavu, M. Badila, F. Draghici, R. Pascu, F. Craciunoiu, I. Rusu, and A. Pribeanu, Mater. Sci. Forum 897, 606 (2017).

    Google Scholar 

  12. F. Bouzid, L. Dehimi, F. Pezzimenti, M. Hadjab, and A.H. Larbi, Superlattice Microstruct. 122, 57 (2018).

    CAS  Google Scholar 

  13. N. Zhang, C. Lin, D. Senesky, and A. Pisano, Appl. Phys. Lett. 104, 073504 (2014).

    Google Scholar 

  14. K. Zekentes, and K. Vasilevskiy, in Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications (Milleserville: Materials Research Forum LLC, 2018).

  15. S. Kyoung, E.S. Jung, and M.Y. Sung, Microelectron. Eng. 154, 69 (2016).

    CAS  Google Scholar 

  16. D. Perrone, M. Naretto, S. Ferrero, L. Scaltrito, and C. Pirri, Mater. Sci. Forum 615, 647 (2009).

    Google Scholar 

  17. L. Boussouar, Z. Ouennoughi, N. Rouag, A. Sellai, R. Weiss, and H. Ryssel, Microelectron. Eng. 88, 969 (2011).

    CAS  Google Scholar 

  18. CREE Research Inc. Durham, NC, USA http://www.cree.com. Accessed 1 March 2019.

  19. Silvaco Int., Atlas User’s Manual, Device Simulator Software (2016).

  20. X. Li, Y. Luo, L. Fursin, J.H. Zhao, M. Pan, P. Alexandrov, and M. Wein, Solid State Electron. 47, 233 (2003).

    CAS  Google Scholar 

  21. M. Ruff, H. Mitlehner, and R. Helbig, IEEE Trans. Electron Dev. 41, 1040 (1994).

    CAS  Google Scholar 

  22. F. Pezzimenti, L.F. Albanese, S. Bellone, and F.G. Della Corte, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology MeetingBCTM (2009), pp. 214–217.

  23. U. Lindefelt, J. Appl. Phys. 84, 2628 (1998).

    CAS  Google Scholar 

  24. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Wien: Springer, 1984).

    Google Scholar 

  25. A. Galeckas, J. Linnros, V. Grivickas, U. Lindefelf, and C. Hallin, Appl. Phys. Lett. 71, 3269 (1997).

    CAS  Google Scholar 

  26. P.T. Landsberg and G.S. Kousik, J. Appl. Phys. 56, 1696 (1984).

    CAS  Google Scholar 

  27. F. Pezzimenti, IEEE Trans. Electron Dev. 60, 1404 (2013).

    CAS  Google Scholar 

  28. M. Bakowski, U. Gustafsson, and U. Lindefelt, Phys. Stat. Sol. (a) 162, 421 (1997).

    CAS  Google Scholar 

  29. M. Roschke and F. Schwierz, IEEE Trans. Electron Dev. 48, 1442 (2001).

    CAS  Google Scholar 

  30. F. Pezzimenti, and F.G. Della Corte, in Proceedings of the Mediterranean Electrotechnical ConferenceMELECON (2010), pp. 1129–1134.

  31. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1982).

    Google Scholar 

  32. M. Philip, and A. O’Neill, in Proceedings of the IEEE Conferences on Optoelectronic and Microelectronic Materials and Devices (2006), pp. 137–140.

  33. A. Fritah, L. Dehimi, F. Pezzimenti, A. Saadoune, and B. Abay, J. Electron. Mater. 48, 3692 (2019).

    CAS  Google Scholar 

  34. F. Pezzimenti, H. Bencherif, A. Yousfi, and L. Dehimi, Solid-State Electron. 161, 107642 (2019).

    CAS  Google Scholar 

  35. Y. Marouf, L. Dehimi, F. Bouzid, F. Pezzimenti, and F.G. Della Corte, Optik 163, 22 (2018).

    CAS  Google Scholar 

  36. M.L. Megherbi, F. Pezzimenti, L. Dehimi, M.A. Saadoune, and F.G. Della Corte, IEEE Trans. Electron Dev. 65, 3371 (2018).

    CAS  Google Scholar 

  37. K. Zeghdar, L. Dehimi, F. Pezzimenti, S. Rao, and F. Della Corte, Jpn. J. Appl. Phys. 58, 014002 (2019).

    Google Scholar 

  38. M.L. Megherbi, F. Pezzimenti, L. Dehimi, A. Saadoune, and F.G. Della Corte, J. Electron. Mater. 47, 1414 (2018).

    CAS  Google Scholar 

  39. G. De Martino, F. Pezzimenti, F.G. Della Corte, G. Adinolfi, and G. Graditi, in Proceedings of the IEEE International Conference Ph.D. Research in Microelectronics and ElectronicsPRIME (2017), pp. 221–224.

  40. F. Pezzimenti, and F.G. Della Corte, in Proceedings of the International Semiconductor ConferenceCAS (2012), pp. 347–350.

  41. F.G. Della Corte, F. Pezzimenti, S. Bellone, and R. Nipoti, Mater. Sci. Forum 679, 621 (2011).

    Google Scholar 

  42. M.L. Megherbi, F. Pezzimenti, L. Dehimi, S. Rao, and F.G. Della Corte, Solid-State Electron. 109, 12 (2015).

    CAS  Google Scholar 

  43. H. Cetin and E. Ayyildiz, Phys. B 405, 559 (2010).

    CAS  Google Scholar 

  44. F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, and F.G. Della Corte, Jpn. J. Appl. Phys. 56, 094301 (2017).

    Google Scholar 

  45. M.J. Bozack, Phys. Status Solidi B 202, 549 (1997).

    CAS  Google Scholar 

  46. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    CAS  Google Scholar 

  47. Q.W. Song, Y.M. Zhang, Y.M. Zhang, F.P. Chen, and X.Y. Tang, Chin. Phys. B 20, 057301 (2011).

    Google Scholar 

  48. J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991).

    CAS  Google Scholar 

  49. D.J. Ewing, Q. Wahab, R.R. Ciechonski, M. Syvajarvi, R. Yakimova, and L.M. Porter, Semicond. Sci. Technol. 22, 1287 (2007).

    CAS  Google Scholar 

  50. J.M. Bluet, D. Ziane, G. Guillot, D. Tournier, P. Brosselard, J. Montserrat, and P. Godignon, Superlattice Microstruct. 40, 399 (2006).

    CAS  Google Scholar 

  51. M.E. Aydin, N. Yildirim, and A. Türüt, J. Appl. Phys. 102, 043701 (2007).

    Google Scholar 

  52. N.J.D. Nagelkerke, Biometrika 78, 691 (1991).

    Google Scholar 

  53. F. Draghici, G. Brezeanu, G. Pristavu, R. Pascu, M. Badila, A. Pribeanu, and E. Ceuca, Sensors 19, 2384 (2019).

    Google Scholar 

  54. L. Di Benedetto, G.D. Licciardo, S. Rao, G. Pangallo, F. Della Corte, and A. Rubino, IEEE Trans. Electron Dev. 65, 687 (2018).

    Google Scholar 

  55. R. Radetić, M. Pavlov-Kagadejev, and N. Milivojević, Serb. J. Electr. Eng. 12, 345 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pezzimenti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeghdar, K., Dehimi, L., Pezzimenti, F. et al. Analysis of the Electrical Characteristics of Mo/4H-SiC Schottky Barrier Diodes for Temperature-Sensing Applications. J. Electron. Mater. 49, 1322–1329 (2020). https://doi.org/10.1007/s11664-019-07802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07802-6

Keywords

Navigation