Skip to main content
Log in

Characterization of CuZnO Nanocomposite Thin Films Prepared from CuO–ZnO Sputtered Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper oxide–zinc oxide (CuO–ZnO) thin films were prepared by a sputtering technique to examine the creation of a CuZnO thin-film nanocomposite. The base film was a zinc oxide layer. A copper oxide layer was deposited on glass coated with ZnO for different deposition times. The structure was examined by x-ray diffraction analysis. Plane (002) was detected for ZnO phase, while planes (111) and \( \left( {\bar{1}11} \right) \) were detected for CuO phase. The crystallite size was calculated for both ZnO and CuO. The crystallite size of CuO phases increased with increasing deposition time, whereas the size of crystals of ZnO phase decreased. The film morphology and roughness were evaluated by scanning electron microscopy. Agglomeration of fine particles was observed. The film roughness decreased from 0.0685 nm for base ZnO films to 0.0357 nm for 800 s CuO–ZnO films. Elemental analysis of the film components was carried out by energy-dispersive x-ray spectroscopy. The ratio of O atoms remained constant at 50 at.%, while the Zn content decreased from 50% for the base sample to 27.66% for the 800 s CuO–ZnO sample. Optical properties, such as the optical absorption spectra, optical transition, and refractive index of the prepared films, were investigated. The optical transition was affected by the CuO layer and the film thickness. The optical bandgap decreased from 3.258 eV for ZnO films with thickness of 107 nm to 3.162 eV for 800 s CuO–ZnO films with thickness of 163 nm. Nonlinear optical behavior was deduced from the optical parameters, and was enhanced by the presence of CuO layers, increasing from 4.151 × 10−11 esu for the ZnO sample to 4.434 × 10−11 esu for the 800 s CuO–ZnO sample. The photoluminescence spectra of the films were investigated and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-H. Hsu, L.-C. Chen, and X. Zhang, Materials (Basel). 7, 1261 (2014).

    CAS  Google Scholar 

  2. P.P. Dorneanu, A. Airinei, N. Olaru, M. Homocianu, V. Nica, and F. Doroftei, Mater. Chem. Phys. 148, 1029 (2014).

    CAS  Google Scholar 

  3. M. Li, Hari-Bala, X. Lv, X. Ma, F. Sun, L. Tang, and Z. Wang, Mater. Lett. 61, 690 (2007).

    CAS  Google Scholar 

  4. M.S. Abdel-wahab, A. Jilani, A. Alshahrie, and A.H. Hammad, J. Mater. Sci. Mater. Electron. 29, 3056 (2018).

    CAS  Google Scholar 

  5. B.K. Das, S.K. Verma, T. Das, P.K. Panda, K. Parashar, M. Suar, and S.K.S. Parashar, Chem. Biol. Interact. 297, 141 (2019).

    CAS  Google Scholar 

  6. T. Das, B.K. Das, S.K.S. Parashar, and K. Parashar, Bull. Mater. Sci. 40, 247 (2017).

    CAS  Google Scholar 

  7. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, A.V. Anupama, and B. Sahoo, Electron. Mater. Lett. 16, 255 (2020).

    CAS  Google Scholar 

  8. T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).

    CAS  Google Scholar 

  9. L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceram. Int. 45, 24625 (2019).

    CAS  Google Scholar 

  10. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A.V. Anupama, and B. Sahoo, Mater. Chem. Phys. 221, 419 (2019).

    CAS  Google Scholar 

  11. W.Q. Peng, S.C. Qu, G.W. Cong, and Z.G. Wang, Mater. Sci. Semicond. Process. 9, 156 (2006).

    CAS  Google Scholar 

  12. D. Raoufi, Renew. Energy 50, 932 (2013).

    CAS  Google Scholar 

  13. N. Srinatha, P. Raghu, H.M. Mahesh, and B. Angadi, J. Alloys Compd. 722, 888 (2017).

    CAS  Google Scholar 

  14. H.C. Park, D. Byun, B. Angadi, D.H. Park, W.K. Choi, J.W. Choi, and Y.S. Jung, J. Appl. Phys. 102, 073114 (2007).

    Google Scholar 

  15. R. Kumar, F. Singh, B. Angadi, J.W. Choi, W.K. Choi, K. Jeong, J.H. Song, M.W. Khan, J.P. Srivastava, A. Kumar, and R.P. Tandon, J. Appl. Phys. 100, 113708 (2006).

    Google Scholar 

  16. T. Das, B. Das, K. Parashar, and S. Parashar, Adv. Sci. Lett. 24, 5703 (2018).

    Google Scholar 

  17. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, and D. Mohamad, Nano-Micro Lett. 7, 219 (2015).

    CAS  Google Scholar 

  18. X. Li, Y. Che, Y. Lv, F. Liu, Y. Wang, C. Zhao, and C. Liu, J. Sol-Gel. Sci. Technol. 89, 672 (2019).

    CAS  Google Scholar 

  19. H.J. Song, M.H. Seo, K.W. Choi, M.S. Jo, J.Y. Yoo, and J.B. Yoon, Sci. Rep. 9, 1 (2019).

    Google Scholar 

  20. M.R. Quirino, G.L. Lucena, J.A. Medeiros, I.M.G. dos Santos, and M.J.C. de Oliveira, Mater. Res. 21, 95 (2018).

    Google Scholar 

  21. J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, and E. Zhang, Mater. Sci. Eng., C 35, 392 (2014).

    Google Scholar 

  22. G.N.S. Vijayakumar, S. Devashankar, M. Rathnakumari, and P. Sureshkumar, J. Alloys Compd. 507, 225 (2010).

    CAS  Google Scholar 

  23. N. Widiarti, J. Sae, and S. Wahyuni, in IOP Conf. Ser. Mater. Sci. Eng. Vol. 172, 11th Jt. Conf. Chem. Conjunction with 4th Reg. Biomater. Sci. Meet. 1516 Sept. 2016 (Purwokerto, Indonesia, 2017), p. 012036.

  24. S. Das and V.C. Sirivastava, J. Nano Res. 35, 21 (2016).

    CAS  Google Scholar 

  25. Q. Simon, D. Barreca, A. Gasparotto, C. MacCato, T. Montini, V. Gombac, P. Fornasiero, O.I. Lebedev, S. Turner, and G. Van Tendeloo, J. Mater. Chem. 22, 11739 (2012).

    CAS  Google Scholar 

  26. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Mater. Sci. Eng. C 33, 91 (2013).

    CAS  Google Scholar 

  27. S. Das and V.C. Srivastava, Nanotechnol. Rev. 7, 267 (2018).

    CAS  Google Scholar 

  28. A.H. Hammad, M.S. Abdel-wahab, S. Vattamkandathil, and A.R. Ansari, Phys. B Condens. Matter 540, 1 (2018).

    CAS  Google Scholar 

  29. H. Abdel-Khalek, E. Shalaan, M.A. El Salam, A.M. El-Sagheer, and A.M. El-Mahalawy, J. Mol. Struct. 1178, 408 (2019).

    CAS  Google Scholar 

  30. G. Gordillo, J. M. Florez, L. C. Hernandez, and P. Teheran, in 1st World Conf. Photovolt. Energy Convers. Conf. Rec. IEEE Photovolt. Spec. Conf. (IEEE, Hawaii, 1994), pp. 307–310.

  31. A.L. Patterson, Phys. Rev. 56, 978 (1939).

    CAS  Google Scholar 

  32. M.S. AlKhalifah, I.M. El Radaf, and M.S. El-Bana, J. Alloys Compd. 813, 152169 (2020).

    CAS  Google Scholar 

  33. J. Sakaliūnienė, J. Čyvienė, B. Abakevičienė, and J. Dudonis, Acta Phys. Pol. A 120, 63 (2011).

    Google Scholar 

  34. A.H. Hammad, M.S. Abdel-wahab, S. Vattamkandathil, and A.R. Ansari, Coatings 9, 615 (2019).

    Google Scholar 

  35. B. Şahin and T. Kaya, Mater. Sci. Semicond. Process. 121, 105428 (2021).

    Google Scholar 

  36. S.P. Anthony, J.I. Lee, and J.K. Kim, Appl. Phys. Lett. 90, 103107 (2007).

    Google Scholar 

  37. A. Sawaby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa, and A. Hosny, Phys. B Condens. Matter 405, (2010).

  38. E.A. Davis and N.F. Mott, Philos. Mag. 22, 0903 (1970).

    CAS  Google Scholar 

  39. A.R. Wassel and I.M. El Radaf, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).

    Google Scholar 

  40. E. Gürbüz, R. Aydin, and B. Şahin, J. Mater. Sci. Mater. Electron. 29, 1823 (2018).

    Google Scholar 

  41. T.S. Moss, Phys. Status Solidi 131, 415 (1985).

    CAS  Google Scholar 

  42. S. Adachi, editor, in Prop. Group-IV, III-V II-VI Semicond. (John Wiley & Sons, Ltd, Chichester, UK, 2005), pp. 211–281.

  43. M.J. Weber, D. Milam, and W.L. Smith, Opt. Eng. 17, 463 (1978).

    CAS  Google Scholar 

  44. V. Dimitrov and S. Sakka, J. Appl. Phys. 79, 1741 (1996).

    CAS  Google Scholar 

  45. W.S. AbuShanab, E.B. Moustafa, A.H. Hammad, R.M. Ramadan, and A.R. Wassel, J. Mater. Sci. Mater. Electron. 30, 18058 (2019).

    CAS  Google Scholar 

  46. A.S. Hassanien and I.M. El Radaf, Phys. B Condens. Matter 585, 412110 (2020).

    CAS  Google Scholar 

  47. I.M. El Radaf, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019).

    Google Scholar 

  48. P.S. Shewale and Y.S. Yu, Ceram. Int. 43, 4175 (2017).

    CAS  Google Scholar 

  49. J. Liu, S.Y. Ma, X.L. Huang, L.G. Ma, F.M. Li, F.C. Yang, Q. Zhao, and X.L. Zhang, Superlattices Microstruct. 52, 765 (2012).

    CAS  Google Scholar 

  50. G. Bhagyalekshmi, A.P.N. Shu, and D.N. Rajedran, Bull. Mater. Sci. 40, 1429 (2017).

    CAS  Google Scholar 

  51. D. Behera and B.S. Acharya, J. Lumin. 128, 1577 (2008).

    CAS  Google Scholar 

  52. H.X. Chen, J.J. Ding, X.G. Zhao, and S.Y. Ma, Phys. B Condens. Matter 405, 1339 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed R. Wassel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-wahab, M.S., Wassel, A.R. & Hammad, A.H. Characterization of CuZnO Nanocomposite Thin Films Prepared from CuO–ZnO Sputtered Films. J. Electron. Mater. 49, 7179–7186 (2020). https://doi.org/10.1007/s11664-020-08505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08505-z

Keywords

Navigation