Skip to main content
Log in

Fabrication and Characterization of CZTS Thin Films Prepared by the Sulfurization of RF-Sputtered Stacked Metal Precursors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films’ structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm−1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).

    Article  Google Scholar 

  2. J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, and K.-H. Kim, Sol. Energy Mater. Sol. Cells 75, 155 (2003).

    Article  Google Scholar 

  3. H. Wang, Int. J. Photoenergy (2011). doi:10.1155/2011/801292.

    Google Scholar 

  4. A. Zuser and H. Rechberger, Resour. Conserv. Recycl. 56, 56 (2011).

    Article  Google Scholar 

  5. S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J. Moon, J.H. Kim, and J.Y. Lee, Sol. Energy Mater. Sol. Cells 95, 3202 (2011).

    Article  Google Scholar 

  6. N. Nakayama and K. Ito, Appl. Surf. Sci. 92, 1 (1996).

    Article  Google Scholar 

  7. K. Tanaka, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 1199 (2007).

    Article  Google Scholar 

  8. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. (2013). doi:10.1002/aenm.201301465.

    Google Scholar 

  9. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt: Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  10. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (version 42). Prog. Photovolt: Res. Appl. 21, 827–837 (2013).

    Article  Google Scholar 

  11. A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, and E.S. Aydil, J. Vac. Sci. Technol. A 29, 051203 (2011).

    Article  Google Scholar 

  12. A. Weber, R. Mainz, and H.W. Schock, J. Appl. Phys. 107, 013516 (2010).

    Article  Google Scholar 

  13. A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr, and H.W. Schock, Thin Solid Films 517, 2107 (2009).

    Article  Google Scholar 

  14. J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, and C. Platzer-Björkman, Chem. Mater. 23, 4949 (2011).

    Article  Google Scholar 

  15. A. Fairbrother, X. Fontané, V.I. Roca, M.E. Rodríguez, S.L. Marino, M. Placidi, L.C. Barrio, A.P. Rodríguez, and E. Saucedo, Sol. Energy Mater. Sol. Cells 112, 97 (2013).

    Article  Google Scholar 

  16. O. Vigil-Galán, M. Espíndola-Rodríguez, M. Courel, X. Fontané, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, and A. Pérez-Rodríguez, Sol. Energy Mater. Sol. Cells 117, 81 (2013).

    Article  Google Scholar 

  17. S. Schorr, A. Weber, V. Honkimäki, and H.-W. Schock, Thin Solid Films 517, 2107 (2009).

    Article  Google Scholar 

  18. R.P.V. Chalapathy, G.S. Jung, and B.T. Ahn, Sol. Energy Mater. Sol. Cells 95, 3176 (2011).

    Article  Google Scholar 

  19. A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, IEEE J. Photovolt. (2011). doi:10.1109/JPHOTOV.2011.2168811.

    Google Scholar 

  20. H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, and A. Takeuchi, Thin Solid Films 517, 2455 (2008).

    Article  Google Scholar 

  21. K. Moriya, K. Tanaka, and H. Uchiki, Jpn. J. Appl. Phys. 46, 5780 (2007).

    Article  Google Scholar 

  22. H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, and A. Takeuchi, Physics (2009). doi:10.1002/pssc.200881182.

    Google Scholar 

  23. S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, S.S. Kolekar, and J.H. Kim, Electrochim. Acta 55, 4057 (2010).

    Article  Google Scholar 

  24. Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, and V.S. Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009).

    Article  Google Scholar 

  25. K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 95, 838 (2011).

    Article  Google Scholar 

  26. S.K. Swami, A. Kumar, and V. Dutta, Energy Procedia 33, 198 (2013).

    Article  Google Scholar 

  27. P.A. Fernandes, P.M.P. Salom, and A.F. da Cunha, Semicond. Sci. Technol. 24, 105013 (2009).

    Article  Google Scholar 

  28. M.I. Amal and K.H. Kim, J. Mater. Sci: Mater. Electron. 24, 4457 (2013).

    Google Scholar 

  29. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011).

    Article  Google Scholar 

  30. H. Yoo and J.H. Kim, Thin Solid Films 518, 6143 (2010).

    Article  Google Scholar 

  31. S. Marchionna, P. Garattini, A. Le Donne, M. Acciarri, S. Tombolato, and S. Binetti, Thin Solid Films 542, 114 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under U.S. Department of Energy Contract No. DE-AC36-08GO28308 to the National Renewable Energy Laboratory. The authors would like to thank Jeff Alleman for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abusnina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abusnina, M., Moutinho, H., Al-Jassim, M. et al. Fabrication and Characterization of CZTS Thin Films Prepared by the Sulfurization of RF-Sputtered Stacked Metal Precursors. J. Electron. Mater. 43, 3145–3154 (2014). https://doi.org/10.1007/s11664-014-3259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3259-2

Keywords

Navigation