Skip to main content
Log in

Explicit Threshold Voltage Modeling Insight for Short Channel Characterization of a WFE Elliptical GAA Strained-Si MOSFET

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents explicit analytical modeling of a gate all around (GAA) strained silicon metal-oxide-semicondutor field-effect transistor (MOSFET) with elliptical cross section by incorporating the popular gate work function engineering (WFE) concept of lateral mole fraction variation from source to drain end. Surface potential and threshold voltage formulation of the proposed structure based on a quasi-three-dimensional scaling equation have been introduced. The derived model is further used to investigate the short channel characteristics of the device in terms of hot carrier effect (HCE), drain-induced barrier lowering (DIBL), threshold voltage roll off (TVRO), and subthreshold slope. The impact of device parameter variation including gate oxide thickness, effective radius, channel doping concentration, germanium (Ge) mole fraction variation in the strained silicon channel along with applied gate to source and drain biases are evaluated on device performance to justify its efficiency in comparison to its single gate material (SM) MOSFET equivalent. Our analytical analysis is further validated by ATLAS-3D device simulated data to verify the precision of the derived model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The international technology roadmap for semiconductor, emerging research devices. (Published by Semiconductor Industry Association, 2009). https://www.semiconductors.org/wpcontent/uploads/2018/09/ERD.pdf. Accessed 5 Sep 2009.

  2. K.K. Young, IEEE Trans. Electron Devices 36, 399 (1989).

    Article  Google Scholar 

  3. D. Rechem and S. Latreche, African Phys. Rev. 2, 80 (2008).

    Google Scholar 

  4. A.S. Verhulst, B. Sorée, D. Leonelli, W.G. Vandenberghe, and G. Groeseneken, J. Appl. Phys. 107, 024518 (2010).

    Article  Google Scholar 

  5. M. Kumar, S. Haldar, M. Gupta, and R.S. Gupta, Semicond. Sci. Technol. 31, 1 (2016).

    Google Scholar 

  6. T.K. Chiang and M.L. Chen, Jpn. J. Appl. Phys. 46, 3283 (2007).

    Article  CAS  Google Scholar 

  7. P. Banerjee, T. Kumari, and S.K. Sarkar, Appl. Phys. A (2018). https://doi.org/10.1007/s00339-018-1567-8.

    Article  Google Scholar 

  8. E. Goel, B. Singh, S. Kumar, K. Singh, and S. Jit, Indian J. Phys. 91, 383 (2017).

    Article  CAS  Google Scholar 

  9. C.P. Auth and J.D. Plummer, IEEE Trans. Electron Devices 45, 2381 (1998).

    Article  CAS  Google Scholar 

  10. R.M.Y. Ng, T. Wang, F. Liu, X. Zuo, J. He, and M. Chan, IEEE Electron Device Lett. 30, 520 (2009).

    Article  CAS  Google Scholar 

  11. S. Bangsaruntip, G.M. Cohen, A. Majumdar, and J.W. Sleight, IEEE Electron Device Lett. 31, 903 (2010).

    Article  CAS  Google Scholar 

  12. L. Zhang, L. Li, J. He, and M. Chan, IEEE Electron Devices Letters. 32, 1188 (2011).

    Article  Google Scholar 

  13. P. Banerjee and S.K. Sarkar, J Electron Mater 48, 3270 (2019).

    Article  CAS  Google Scholar 

  14. B. Manna, S. Sarkhel, N. Islam, S. Sarkar, and S.K. Sarkar, IEEE Trans. Electron Devices 59, 3280 (2012).

    Article  CAS  Google Scholar 

  15. P. Saha, S. Sarkhel, and S.K. Sarkar, J. Comput. Electron. 16, 648 (2017).

    Article  Google Scholar 

  16. S. Sarkhel and S.K. Sarkar, Superlattices Microstruct. 82, 293 (2015).

    Article  CAS  Google Scholar 

  17. M. Kumar, S. Dubey, P.K. Tiwari, and S. Jit, J. Comput. Electron. 12, 20 (2013).

    Article  CAS  Google Scholar 

  18. S. Sarkhel, B. Manna, and S.K. Sarkar, J. Low Power Electron. 10, 383 (2014).

    Article  Google Scholar 

  19. T.K. Chiang, IEEE Trans. Electron Devices 59, 3127 (2012).

    Article  Google Scholar 

  20. C.P. Auth and J.D. Plummer, IEEE Electron Device Lett. 18, 74 (1997).

    Article  Google Scholar 

  21. P. Banerjee and S.K. Sarkar, Semicond. Sci. Technol. 34, 035010 (2019).

    Article  CAS  Google Scholar 

  22. P. Saha, P. Banerjee, and S.K. Sarkar, Superlattices Microstruct. 118, 16 (2018).

    Article  CAS  Google Scholar 

  23. ATLAS User Manual, 3D Device Simulator (Santa Clara: Silvaco Inc., 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Sarkar, S.K. Explicit Threshold Voltage Modeling Insight for Short Channel Characterization of a WFE Elliptical GAA Strained-Si MOSFET. J. Electron. Mater. 49, 7486–7494 (2020). https://doi.org/10.1007/s11664-020-08503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08503-1

Keywords

Navigation