Skip to main content
Log in

Insights into the Ground-State Charge Transfer in Conjugated Polymer Donor–Acceptor Complexes

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Van der Waals type forces are generally responsible for the stability of conjugated polymer–acceptor complexes, and no charge transfer is observed in the ground state. Electron transfer generally occurs from donor materials to acceptor materials via photoinduced electron transfer. Here, we report a partial ground-state charge transfer in the all-polymer donor–acceptor interface using density functional theory-based methods such as long-range corrected ωB97XD and hybrid meta exchange–correlation M06 functionals. These methods are also used to evaluate the geometrical and electronic properties of conjugated polymers in the neutral and charged states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Ravva, T. Wang, and J.-L. Brédas, Chem. Mater. 28, 8181 (2016).

    Article  CAS  Google Scholar 

  2. S. Sweetnam, K. Vandewal, E. Cho, C. Risko, V. Coropceanu, A. Salleo, J.-L. Brédas, and M.D. McGehee, Chem. Mater. 28, 1446 (2016).

    Article  CAS  Google Scholar 

  3. I. Angunawela, M.M. Nahid, M. Ghasemi, A. Amassian, H. Ade, and A. Gadisa, ACS. App. Mater. Interfaces 12, 26239 (2020).

    Article  CAS  Google Scholar 

  4. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A.D. Santos, J.L. Brédas, M. Lögdlund, and W.R. Salaneck, Nature 397, 121 (1999).

    Article  CAS  Google Scholar 

  5. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, Chem. Rev. 107, 926 (2007).

    Article  CAS  Google Scholar 

  6. J.-L. Brédas, J.E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009).

    Article  Google Scholar 

  7. S.M. Ryno, M.K. Ravva, X. Chen, H. Li, and J. Brédas, Adv. Energy Mater. 7, 1601370 (2017).

    Article  Google Scholar 

  8. J.-L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil, Chem. Rev. 104, 4971 (2004).

    Article  Google Scholar 

  9. G. Duva, P. Beyer, R. Scholz, V. Belova, A. Opitz, A. Hinderhofer, A. Gerlach, and F. Schreiber, Phys. Chem. Chem. Phys. 21, 17190 (2019).

    Article  CAS  Google Scholar 

  10. B. Lüssem, C.-M. Keum, D. Kasemann, B. Naab, Z. Bao, and K. Leo, Chem. Rev. 116, 13714 (2016).

    Article  Google Scholar 

  11. Y. Xu, H. Sun, A. Liu, H.-H. Zhu, W. Li, Y.-F. Lin, and Y.-Y. Noh, Adv. Mater. 30, 1801830 (2018).

    Article  Google Scholar 

  12. J. H. Oh, A.-R. Han, H. Yu, E. K. Lee, and M. J. Jang, in edited by Z. Bao, I. McCulloch, R. Shinar, and I. Kymissis (San Diego, California, United States, 2013), p. 883112.

  13. K. Xu, H. Sun, T.-P. Ruoko, G. Wang, R. Kroon, N.B. Kolhe, Y. Puttisong, X. Liu, D. Fazzi, K. Shibata, C.-Y. Yang, N. Sun, G. Persson, A.B. Yankovich, E. Olsson, H. Yoshida, W.M. Chen, M. Fahlman, M. Kemerink, S.A. Jenekhe, C. Müller, M. Berggren, and S. Fabiano, Nat. Mater. 19, 738 (2020).

    Article  CAS  Google Scholar 

  14. M. Walker, A.J.A. Harvey, A. Sen, and C.E.H. Dessent, J. Phys. Chem. A 117, 12590 (2013).

    Article  CAS  Google Scholar 

  15. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  CAS  Google Scholar 

  16. Y. Zhao and D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  17. P. Winget and J.-L. Brédas, J. Phys. Chem. C 115, 10823 (2011).

    Article  CAS  Google Scholar 

  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16 Rev. C.01 (Wallingford, CT, 2016).

  19. K. Do, M.K. Ravva, T. Wang, and J.-L. Brédas, Chem. Mater. 29, 346 (2016).

    Article  Google Scholar 

  20. H. Oberhofer, K. Reuter, and J. Blumberger, Chem. Rev. 117, 10319 (2017).

    Article  CAS  Google Scholar 

  21. M. Planells, M. Nikolka, M. Hurhangee, P.S. Tuladhar, A.J.P. White, J.R. Durrant, H. Sirringhaus, and I. McCulloch, J Mater Chem C 2, 8789 (2014).

    Article  CAS  Google Scholar 

  22. S.Y. Hong, M. Kertesz, Y.S. Lee, and O.K. Kim, Macromolecules 25, 5424 (1992).

    Article  CAS  Google Scholar 

  23. J.L. Bredas and G.B. Street, Acc. Chem. Res. 18, 309 (1985).

    Article  CAS  Google Scholar 

  24. S. Ghosh, V. Gueskine, M. Berggren, and I.V. Zozoulenko, J. Phys. Chem. C 123, 15467 (2019).

    Article  CAS  Google Scholar 

  25. D. Fazzi, S. Fabiano, T.-P. Ruoko, K. Meerholz, and F. Negri, J. Mater. Chem. C 7, 12876 (2019).

    Article  CAS  Google Scholar 

  26. G. Sini, J.S. Sears, and J.-L. Brédas, J. Chem. Theory Comput. 7, 602 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Science and Technology (DST), New Delhi, India, for support of this research under the DST-INSPIRE scheme (DST/INSPIRE/04/2017/001393). We would like to thank the SRM Supercomputer Center, SRM Institute of Science and Technology for providing the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar Ravva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haseena, S., Ravva, M.K. Insights into the Ground-State Charge Transfer in Conjugated Polymer Donor–Acceptor Complexes. J. Electron. Mater. 50, 1621–1628 (2021). https://doi.org/10.1007/s11664-020-08430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08430-1

Keywords

Navigation