Skip to main content
Log in

DFT investigation on the effect of the permutation of some electron donating and accepting groups in the charge transfer process within 2-((E)-[2-hydroxyphenyl)imino] methyl)phenol

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A series of donor-π-acceptor type compounds derived from 2-((E)-[2- hydroxyphenyl)imino] methyl)phenol have been studied herein for potential applications in nonlinear optical technologies. Their optimized structures were investigated at the M06-2X/6–311 +  + G(d,p) level of theory in gas phase, whereas the electronic properties were analyzed at the M06-2X/6-311G(d,p) level of theory in chloroform. Swapping the position of electron donating (–OH and –NH2) and accepting (–CN and –NO2) groups on LF and then computing the statics and dynamics polarizability, hyperpolarizability and NLO-related properties which are Electro-Optic Pockel’s Effect (EOPE), the Optical Kerr Effect (OKE) and Electric-Field-Induced SHG (EFISHG) helped to confirm that, charge transfer occurs from the donor, passes through the phenyl ring linked to the nitrogen of the imine function, to the acceptor. Theoretical results revealed that 1b and 2b have βtot values 53 and 74 times higher than that of the urea prototype at ω = 0.0 as well as 127 and 303 times at ω = 0.04282 a.u., respectively. Among the derivatives, 2b has been found to be the best suited compound for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeyrek TC (2013) Theoretical study of the N-(2.5-methylphenyl) salicylaldimine schiff base ligand: atomic charges, molecular electrostatic potential, nonlinear optical (NLO) effects and thermodynamic properties. J Korean Chem Soc 57:461–471

    Article  CAS  Google Scholar 

  2. Tunç T, Musa S, Murat S, Orhan B (2009) synthesis, crystal structure and spectroscopic studies of 2-{(E)-[2-Hydroxyphenyl)imino]methyl}phenol Schiff base molecule. J Chem Cryst 39:672–676

    Article  CAS  Google Scholar 

  3. Nkungli NK, Ghogomu JN (2016) Concomitant effects of transition metal chelation and solvent polarity on the first molecular hyperpolarizability of 4-methoxyacetophenone thiosemicarbazone: a DFT study. J Theor Chem. https://doi.org/10.1155/2016/7909576

    Article  Google Scholar 

  4. Thanthiriwatte KS, Nalin de Silva KM (2002) Non-linear optical properties of novel fluorenyl derivatives ab-initio quantum chemical calculations. J Mol Struct 617:169–175

    Article  CAS  Google Scholar 

  5. Ravindra HJ, Harrison WTA, Suresh KMR, Dharmaprakash SM (2009) Synthesis, crystal growth, characterization and structure-NLO property relation in 1,3-bis(4-methoxyphenyl)prop-2-en-1-one single crystal. J Cryst Growth 311:310–315

    Article  CAS  Google Scholar 

  6. Batista RMF, Costa SPG, Belsley M, Raposo MMM (2010) Synthesis and characterization of new push-pull anthraquinones bearing an arylthienyl-imidazo conjugation pathway as efficient nonlinear optical chromophores. Mater Sci Forum. https://doi.org/10.1016/j.tet.2008.07.043

    Article  Google Scholar 

  7. Shkir M, Muhammad S, AlFaify S, Irfan A, Patil PS, Arora M, Algarni H, Jingping Z (2015) An investigation on the key features of a D-[small pi]-A type chalcone derivative for opto-electronic applications. RSC Adv 5:87320–87332

    Article  CAS  Google Scholar 

  8. Zouaoui-Rabah M, Sekkal-Rahal M, Djilani-Kobibi F, Elhorri MA, Springborg M (2016) Perfomance of hybrid DFT Compared to MP2 methods in calculating nonlinear optical properties of divinylpyrene derivatives molecules. J Phys Chem A. https://doi.org/10.1021/acs.jpca.6b08040

    Article  PubMed  Google Scholar 

  9. Shkir M, AlFaity S, Arora M, Ganesh V, Abbas H, Yahia IS (2017) A first principles study of key electronic, optical, second and third order nonlinear optical properties of 3-(4-clorophenyl)-1-(pyridine-3-yl)prop-2-en-1-one: a novel D–π–A type chalcone derivative. J Comput Electron. https://doi.org/10.1007/s10825-017-1050-3

    Article  Google Scholar 

  10. Ekbote A, Patil PS, Maidur SR, Chia TS, Quah CK (2017) Structure and nonlinear optical properties of (E)-1-(4-aminophenyl)-3-(3-chlorophenyl) prop-2-en-1-one: A Promising new D-π-A-π-D type chalcone derivative crystal for nonlinear optical devices. J Mol Struct 1129:239–247

    Article  CAS  Google Scholar 

  11. Pandith AH, Islam N (2014) Electron transport and nonlinear optical properties of substituted aryldimesityl boranes: a DFT study. PLoS ONE 9:1–24

    Article  CAS  Google Scholar 

  12. Islam N, Chimni SS (2016) DFT investigation on nonlinear optical (NLO) properties of novel borazine derivatives. Comput Theor Chem 1086:58–66

    Article  CAS  Google Scholar 

  13. Alyar H (2013) A review on nonlinear optical properties of donor-acceptor derivatives of naphthalene and azanaphthalene. Rev Adv Mater Sci 34:79–87

    CAS  Google Scholar 

  14. Maidur SR, Patil PS, Rao SV, Shkir V, Dharmaprakash SM (2017) Experimental and computational studies on second and third-order nonlinear optical properties of a novel D–π–A type chalcone derivative: 3-(4-methoxyphenyl)-1-(4-nitrophenyl) prop-2-en-1 one. Opt Laser Technol 97:219–228

    Article  CAS  Google Scholar 

  15. Arı H, Büyükmumcu Z (2017) Comparison of DFT functionals for prediction of band gap of conjugated polymers and effect of HF exchange term percentage and basis set on the performance. J Com Mater Sci 138:70–76

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A02. Gaussian Inc, Wallingford

    Google Scholar 

  17. Roy DD, Todd AK, John MM (2009) Gauss view 5.0.8. Gaussian Inc, Wallingford

    Google Scholar 

  18. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent Interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  19. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. further extensions of gaussian-type basis set for uses in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  20. Umadevi V, Umadevi P, Santhanamoorthi N, Senthilkumar L (2015) Effet of alkyl chain on the NLO property of nonylphenol isomers: a DFT study. Mon Chem. https://doi.org/10.1007/00706-015-1497-5

    Article  Google Scholar 

  21. Chen Z, Li Y, He Z, Xu Y, Yu W (2019) Theoretical investigations on charge transport properties of tetrabenzo[a, d, j, m]coronene derivatives using different density functional theory functionals (B3LYP, M06–2X, and wB97XD). J Chem Res. https://doi.org/10.1177/1747519819861626

    Article  Google Scholar 

  22. Shabbir M, Abdullah GA, Zhongmin S, Hongliang X, Ahmad I, Rasool CA (2017) First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones. J Mol Graph Model 72:58–69

    Article  CAS  Google Scholar 

  23. Shabbir M (2015) Second-order nonlinear optical properties of dithienophenazine and TTF derivatives: a butterfly effect of dimalononitrile substitutions. J Mol Graph Model 59:14–20

    Article  CAS  Google Scholar 

  24. Alongamo ACH, Nkungli NK, Ghogomu JN (2019) DFT-based study of the impact of transition metal coordination on the charge transport and nonlinear optical (NLO) properties of 2-{[5-(4-nitrophenyl)-1,3,4-thiadiazol-2-ylimino]methyl}phenol. Mol Phys. https://doi.org/10.1080/00268976.2019.1576932

    Article  Google Scholar 

  25. Granovsky AA Firefly version 8.0.0. http://classic.chem.msu.su/gran/firefly/index.html

  26. Schmidt M, Baldridge K, Boatz J, Elbert S, Gordon M, Jensen J, Koseki S, Matsunaga N, Nguyen K, Su S (1993) Parallel version (Openmpi) running with 48 nodes. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  27. Hadji D, Brahim H (2018) Structural, optical and nonlinear optical properties and TD-DFT analysis of heteroleptic bis-cyclometalated iridium(III) complex containing 2-phenylpyridine and picolinate ligands. Theor Chem Acc 137:1–10

    Article  CAS  Google Scholar 

  28. ElhorriZouaoui-Rabah AM (2017) NLO response of derivatives of benzene, stilbene and diphenyl acetylene MP2 and DFT calculations. Chin J Chem Eng 25:800–808

    Article  CAS  Google Scholar 

  29. Shkir M, AlFaify S, Abbas H, Muhammad S (2015) First principal studies of spectroscopic (IR and Raman, UV–visible), molecular structure, linear and nonlinear optical properties of L-arginine pnitrobenzoate monohydrate (LANB): a new non-centrosymmetric material. Spectrochim Acta Part A Mol Biomol Spectrosc 147:84–92

    Article  CAS  Google Scholar 

  30. Guezguez I, Karakas A, Iliopoulos K, Derkowska-Zielinska B, El-Ghayoury A, Ranganathan A, Batail P, Migalska-Zalas A, Sahraoui B, Karakaya M (2013) Theoretical and experimental investigations on the nonlinear optical properties of gold(III) dithiolene complexes. Opt Mater 36:106–111

    Article  CAS  Google Scholar 

  31. Bader RFW, Nguyen-Dang TT (1981) Quantum theory of atoms in molecules-dalton revisited. Adv Quantum Chem 14:63–124

    Article  CAS  Google Scholar 

  32. Yang H, Boulet P, Record MC (2020) A rapid method for analyzing the chemical bond from nnergy densities calculations at the bond critical point. Comput Theor Chem 1178:112784–112792

    Article  CAS  Google Scholar 

  33. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  34. Epinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  Google Scholar 

  35. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  36. Bhat K, Chang KJ, Aggarwal MD, Wang WS, Penn BG, Frazier DO (1996) Synthesis and characterization of various schiff bases for non-linear optical applications. Mater Chem Phys 44:261–266

    Article  CAS  Google Scholar 

  37. Karakas A, Migalska-Zalas A, El Kouari Y, Gozutok A, Karakaya M, Touhtouh S (2013) Quatum chemical calculations and experimental Studies of third-order nonlinear optical properties of conjugated TTF-quinones. J Opt Mater. https://doi.org/10.1016/j.optmat.2013.07.005

    Article  Google Scholar 

  38. Meng Q, Yan W, Yu M, Huang D (2003) A study of third-order Nonlinear optical properties for anthraquinone derivatives. Dye Pigment 56:145–149. https://doi.org/10.1016/S01437208(02)00123-7

    Article  CAS  Google Scholar 

  39. Krishnakumar M, Karthick S, Thirupugalmani K, Brahadeeswaran S (2007) Second and third-order nonlinear optical and DFT calculations on 2-amino-5-chloro pyridinium-L-tartrate: a phasematchable organic single crystal. Opt Mater 66:79–93

    Article  CAS  Google Scholar 

  40. Otero R, Vàzquez de Parga AL, Gallego JM (2017) Electronic, structural and chemical effects of charge transfer at organic/inorganic interfaces. Surf Sci Rep 72:105–145

    Article  CAS  Google Scholar 

  41. Zaier R, Mahdhaoui F, Ayachi S, Boubaker T (2019) Prediction of structural, vibrational and nonlinear optical properties of small organic conjugated molecules derived from pyridine. J Mol Struct 15:131–140

    Article  CAS  Google Scholar 

  42. Zeyrek CT, Ünver H, Temiz-Arpaci O, Boyacioglu B, Elmali A (2019) Spectroscopic properties and theoretical studies of 5-ethylsulphonyl-2-phenyl-benzoxazole: relation between the frontier molecular orbitals and optical properties. J Struct Chem 60:241–254

    Article  CAS  Google Scholar 

  43. Lu T, Chen F (2011) Calculation of molecular orbital composition. Acta Chim Sinica 69:2392–2406

    Google Scholar 

  44. Vahideh HR, Bahareh PM (2018) Structural and optical properties of some 5,8-diaminoquinoxaline schiff bases: quantum chemical calculations. Der Chem Sinica 9:544–554

    Google Scholar 

  45. Eryılmaz S (2018) The theoretical investigation of global reactivity descriptors. nlo behaviours and bioactivity scores of some norbornadiene derivatives. Sak Univ J Sci 22:1638–2164

    Google Scholar 

  46. Sharma K, Melavanki R, Patil SS, Kusanur R, Patil NR, Shelar VM (2019) Spectroscopic behavior, FMO, NLO and NBO analysis of two novel aryl boronic acid derivatives: experimental and theoretical insights. J Mol Struct 1181:474–487

    Article  CAS  Google Scholar 

  47. Avhad K, Jadhav A, Sekar N (2017) Fluorescent vinyl and styryl coumarins: a comprehensive DFT study of structural, electronic and NLO properties. J Chem Sci 129:1829–1841

    Article  CAS  Google Scholar 

  48. Maidur SR, Patil PS, Rao SV, Shkir M, Dharmaprakash SM (2017) Experimental and computational studies on second-and third-order nonlinear optical properties of a novel d-π-atype chalcone derivative: 3-(4-methoxyphenyl)-1-(4-nitrophenyl) prop-2-en-1 one. Opt Laser Technol 97:219–228

    Article  CAS  Google Scholar 

  49. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107:46–74

    Article  CAS  Google Scholar 

  50. Arunkumar A, Anbarasan PM (2019) Optoelectronic properties of a simple metal-free organic sensitizer with different spacer groups: quantum chemical assessments. J Electron Mater 48:1522–1530

    Article  CAS  Google Scholar 

  51. Ayare NN, Shukla VK, Sekar N (2020) Charge transfer and nonlinear optical properties of anthraquinone D–π–A dyes in relation with the DFT based molecular descriptors and perturbational potential. Comput Theory Chem. https://doi.org/10.1016/j.comptc.2020.112712

    Article  Google Scholar 

  52. Zhang MY, Ma NN, Sun SL, Sun XX, Qui YQ, Chen B (2012) Quantum chemical study on first hyperpolarizabilities of mono- and bimetal Pt(II) diimine complexes. J Organo Chem 718:1–7

    Article  CAS  Google Scholar 

  53. Dworczak R, Fabian WMF, Reidlinger C, Rumpler A, Schachner J, Zangger K (2002) Nonlinear optical properties of diazabutadienes and -hexatrienes; experimental and computational aspects. Spectrochim Acta A 58:2135–2144

    Article  Google Scholar 

  54. Shan X, Ibrahim AO, Zhou Y et al (2012) Luminescent, second-order NLO and magnetic properties of the hydrogen-bond based network derived from 2,2’-bipyridine-6,6’-dicarboxylate. Inorg Chem Commun 22:149–153

    Article  CAS  Google Scholar 

  55. Albert IDL, Marks TJ, Ratner MA (1998) Large molecular hyperpolarizabilities in “push−pull” porphyrins. molecular planarity and auxiliary donor−acceptor effects. Chem Mater 10:753–762

    Article  CAS  Google Scholar 

  56. Karakas A, Elmali A, Ünver H, Svoboda I (2004) Nonlinear optical properties of some derivatives of salicylaldimine-based ligands. J Mol Struct 702:103–110

    Article  CAS  Google Scholar 

  57. Zhou Y (2003) Investigation and comparison of the electro-photo property of carbon-rich chain and cycle compounds. Mater Sci Eng 99:593–596

    Article  CAS  Google Scholar 

  58. Dhas DA, Joe IH, Roy S, Freeda T (2010) DFT Computations and spectroscopic analysis of a pesticide: chlorothalonil. Spectrochim Acta A 77:36–44

    Article  CAS  Google Scholar 

  59. Balachandran V, Lakshmi A, Janaki A (2012) Conformational stability, vibrational spectral studies, HOMO–LUMO and NBO analyses of 2-hydroxy-4-methyl-3-nitropyridine and 2-hydroxy-4-methyl-5-nitropyridine based on density functional theory. J Mol Struct 1013:75–85

    Article  CAS  Google Scholar 

  60. Gopalakrishnan S, Vijayakumar S, Shankar R (2018) DFT/TD-DFT study of halogen doping and solvent contributions to the structural and optoelectronic properties of poly [3,6-carbazole]and poly[indolo(3,2-b)-carbazole]. Struct Chem 29:1775–1796

    Article  CAS  Google Scholar 

  61. Carlo A, Tangui LB, Marika S, Liam W, Gregorio G, Ryochi F, Masahiro E, Nadia R, Ilaria C (2015) Exploring excited states using time dependent density functional theory and density-based indexes. Coord Chem Rev 304:166–178

    Google Scholar 

  62. Tangui LB, Carlo A, Ilaria C (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506

    Article  CAS  Google Scholar 

  63. Denis J, Tangui LB, Carlo A, Ilaria C (2012) What is the “best” atomic charge model to describe through-space charge transfer excitation? Phys Chem Chem Phys 14:5383–5388

    Article  CAS  Google Scholar 

  64. De Sousa S, Lyu S, Ducasse L, Toupance T, Olivier C (2015) Tuning visible-light absorption properties of Ru–diacetylide complexes: simple access to colorful efficient dyes for DSSCs. J Mater Chem A 3:18256–18264

    Article  CAS  Google Scholar 

  65. Hasanein A, Elmarassi Y, Ali B (2015) TD-DFT study of charge transfer excitation in D–π–A metal complex dyes as sensitizers in DSSCs. J Comput Method Mol Des 5:109–119

    CAS  Google Scholar 

  66. Natarajan N, Shi L, Xiao H, Wang J, Zhang L, Zhang X, Chen Z (2019) PtAu3 cluster complexes with narrow-band emission for solution processed organic light emitting diodes. J Mater Chem C. https://doi.org/10.1039/C8TC06384B

    Article  Google Scholar 

  67. Zhao D, Saputra RM, Song P, Yang Y, Ma F, Li Y (2020) Enhanced photoelectric and photocatalysis performances of quinacridone derivatives by forming D-π-A-A structure. Sol Energy 201:872–883

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aymard Didier Tamafo Fouegue or Julius Numbonui Ghogomu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data availability

The output files of all relaxed structures are available as electronic supplementary materials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwamba Tessa, C.B., Tamafo Fouegue, A.D., Nono, J.H. et al. DFT investigation on the effect of the permutation of some electron donating and accepting groups in the charge transfer process within 2-((E)-[2-hydroxyphenyl)imino] methyl)phenol. Theor Chem Acc 141, 31 (2022). https://doi.org/10.1007/s00214-022-02895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02895-5

Keywords

Navigation