Skip to main content
Log in

Thermally Induced Delamination of PV-TEG: Implication of Leg’s Joule and Thomson Heating

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermal implication of peel stresses and Joule and Thomson heating on the delamination of photovoltaic-thermoelectric generator (PV-TEG) layers is modelled and established numerically. The scope of the study embraces simulation of the hybrid system with and without electric potential difference. Furthermore, the results obtained from the interfacial peel stresses demonstrate that uneven contractions occur in the layers of the hybrid system, resulting in delamination. In addition, the conductor strip/TEG interface has the highest peel stress with a numerical value of 0.13 GPa, while the glass/ethyl vinyl acetate (EVA) interface presents a contrasting stress pattern in comparison to the EVA/cell, EVA/back plate and conductor strip/TEG interface. However, the n-type leg of the TEG has a higher thermal stress in comparison to the entire system components resulting from the application of 7 mV electric potential. Finally, this paper demonstrates that thermal stress is extremely deleterious in the TEG in comparison to the PV module. As a result, device failures will commence from the thermoelectric legs, with the n-type leg having a shorter operational life in comparison to the p-type leg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A pv :

PV surface area (m2)

A x :

TEG variable cross-sectional area (m2)

E :

Young's modulus (GPa)

\( \vec{E} \) :

Electric field potential (V)

G :

Incident irradiance (W/m2)

h 0 :

Heat transfer coefficient (W/m2K)

J :

Current density (A/m2)

K :

Thermal conductivity (W/mK)

Q h :

Hot junction heat (W)

Qx, Qy, Qz :

Heat transfer component (W)

R :

TEG electrical resistance (ohms)

S :

Seebeck coefficient (V/K)

S y :

Yield stress (GPa)

T a :

Ambient temperature (K)

T cell :

Cell temperature (K)

T ref :

PV reference temperature (K)

T sky :

Sky temperature (K)

v :

Poisson ratio

V :

Potential difference (V)

w :

Wind speed (m/s)

α :

Coefficient of thermal expansion (1/K)

β 0 :

PV temperature coefficient (1/K)

ρ :

Density (kg/m3)

θ :

Tapered angle (°)

\( \eta_{\text{pv}} \) :

PV efficiency

\( \eta_{\text{ref}} \) :

PV reference efficiency

σp, σn :

p and n-type electrical conductivity (S/m)

σ1, σ2, σ3 :

Principal stresses (GPa)

σ vm :

Von Mises stress (GPa)

ε :

Strain

\( U^{\prime\prime\prime} \) :

Internal heat generation (W/m3)

References

  1. E. Skoplaki, A.G. Boudouvis, and J.A. Palyvos, Sol. Energy Mater. Sol. Cells 92, 1393 (2008).

    Article  CAS  Google Scholar 

  2. S. Singh, O. Isreal, and R. Lamba, Sol. Energy 170, 896 (2018).

    Article  CAS  Google Scholar 

  3. K. Kant, A. Shukla, A. Sharma, and P. Henry, Sol. Energy 140, 151 (2016).

    Article  CAS  Google Scholar 

  4. J. Gao, Q. Du, X. Zhang, and X.-Q. Jiang, J. Electron. Mater. 40, 884 (2011).

    Article  CAS  Google Scholar 

  5. Y. Lee, A.A.O. Tay, in PV Asia Pacific Conference (2013), pp. 265–271.

  6. N. Barth, M. A. A. Khaleel, J. P. de M. Correia, and S. Ahzi, in MEMA (2015), pp. 441–450.

  7. L. Yixian, A.A.O. Tay, in IEEE (2011), pp. 3172–3177.

  8. J. Zaraket, M. Aillerie, and C. Salame, Energy Procedia 119, 702 (2017).

    Article  Google Scholar 

  9. A.S. Al-Merbati, B.S.S. Yilbas, and A.Z.Z. Sahin, Appl. Therm. Eng. 50, 683 (2013).

    Article  Google Scholar 

  10. T. Ming, W. Yang, Y. Wu, and Y. Xiang, Int. J. Hydrogen Energy 42, 3521 (2016).

    Article  Google Scholar 

  11. S. Shittu, G. Li, X. Zhao, X. Ma, and Y. Golizadeh, Energy Convers. Manag. 184, 180 (2019).

    Article  CAS  Google Scholar 

  12. Y. Wu, T. Ming, X. Li, T. Pan, K. Peng, and X. Luo, Energy Convers. Manag. 88, 915 (2014).

    Article  Google Scholar 

  13. U. Erturun, K. Erermis, and K. Mossi, Appl. Therm. Eng. 73, 126 (2014).

    Article  Google Scholar 

  14. H. Song, C. Gao, J. Li, P. Taylor, H. Song, C. Gao, and J. Li, J. Therm. Stress 38, 37 (2015).

    Article  Google Scholar 

  15. J.N. Reddy and C.D. Chin, J. Therm. Stress 21, 593 (1998).

    Article  Google Scholar 

  16. Z. Xue, Y. Yu, X. Li, and X. Tian, J. Therm. Stress 41, 80 (2018).

    Article  Google Scholar 

  17. A.M. Khouri and M.A.O. Robles, Bringing Thermoelectricity into Reality, ed. P. Aranguren (London: IntechOpen, 2018), pp. 331–351.

    Google Scholar 

  18. R. Lamba and S.C. Kaushik, Energy Convers. Manag. 144, 388 (2017).

    Article  Google Scholar 

  19. E.E. Antonova, D.C. Looman, in IEEE International Conference Thermoelectrics (2005), pp. 200–204.

  20. O.I. Ibeagwu, P.M. Oko, U. Anuta, A.E. Kevwe, I.I. Ibe, J. Ifeanyi, C. Anyaoha, A. Kalu-Uka, E. Nwachukwu, in NIEEE Nsukka Chapter␣Conference (2019), pp. 338–348.

  21. S. Shittu, G. Li, X. Zhao, X. Ma, Y. Golizadeh, and E. Ayodele, J. Power Sources 428, 53 (2019).

    Article  CAS  Google Scholar 

  22. G. Li, X. Zhao, Y.I. Jin, X. Chen, J.I.E. Ji, and S. Shittu, J. Electron. Mater. 47, 5344 (2018).

    Article  CAS  Google Scholar 

  23. R. Musii, N. Melnyk, and V. Dmytruk, J. Therm. Stress 41, 1125 (2018).

    Article  Google Scholar 

  24. B.L. Wang and J.C. Han, Philos. Mag. Lett. 90, 241 (2010).

    Article  CAS  Google Scholar 

  25. S. Ueda and Y. Tani, J. Therm. Stress 31, 403 (2008).

    Article  Google Scholar 

  26. S. Ueda, M. Okada, and Y. Nakaue, J. Therm. Stress 41, 98 (2017).

    Article  Google Scholar 

  27. Y. Ootao and Y. Tanigawa, Int. J. Mech. Sci. 47, 1769 (2005).

    Article  Google Scholar 

  28. O.I. Ibeagwu, Energy 180, 90 (2019).

    Article  Google Scholar 

  29. S. Mahmoudinezhad, A. Rezania, and L.A. Rosendahl, Energy Convers. Manag. 164, 443 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chika C. Maduabuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maduabuchi, C.C., Mgbemene, C.A. & Ibeagwu, O.I. Thermally Induced Delamination of PV-TEG: Implication of Leg’s Joule and Thomson Heating. J. Electron. Mater. 49, 6417–6427 (2020). https://doi.org/10.1007/s11664-020-08390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08390-6

Keywords

Navigation