Skip to main content
Log in

Effects of γ-Ray Irradiation on AlGaN/GaN Heterostructures and High Electron Mobility Transistor Devices

  • International Electron Devices and Materials Symposium 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study examined the effects of three cumulative γ-ray irradiation doses on AlGaN/GaN epilayer material and on high electron mobility transistor (HEMT) devices. After a cumulative γ-ray dose of 16 kGy, the Hall mobility increased from 1800 cm2/V s to 2100 cm2/V s, as determined through Hall measurement. Atomic force microscopy indicated an improvement in surface roughness but no change in the surface potential \( \left( {\emptyset_{\rm{s}} } \right) \). The HEMT device exhibited improvement in the drain current, with a subtle decreasing tendency in the leakage current. At high doses of γ-ray irradiation, the trends in the material and device parameters saturated. Moreover, the metal–semiconductor interface degraded, as confirmed through scanning electron microscopy image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Shur, Solid State Electron. 42, 2131 (1998).

    CAS  Google Scholar 

  2. U.K. Mishra, P. Parikh, and Y.F. Wu, Proc. IEEE 90, 1022 (2002).

    CAS  Google Scholar 

  3. B.D. Weaver, T.J. Anderson, A.D. Koehler, J.D. Greenlee, J.K. Hite, D.I. Shahin, F.J. Kub, and K.D. Hobart, ECS J. Solid State Sci. Technol. 5, Q208 (2016).

    CAS  Google Scholar 

  4. A.Y. Polyakov, S.J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, J. Mater. Chem. C 1, 877 (2013).

    CAS  Google Scholar 

  5. Y.-S. Hwang, L. Liu, F. Ren, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, N.G. Kolin, V.M. Boiko, S.S. Vereyovkin, V.S. Ermakov, C.-F. Lo, O. Laboutin, Y. Cao, J.W. Johnson, N.I. Kargin, R.V. Ryzhuk, and S.J. Pearton, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 31, 022206 (2013).

    Google Scholar 

  6. N.E. Ives, J. Chen, A.F. Witulski, R.D. Schrimpf, D.M. Fleetwood, R.W. Bruce, M.W. McCurdy, E.X. Zhang, and L.W. Massengill, in IEEE Trans. Nucl. Sci. (Institute of Electrical and Electronics Engineers Inc., 2015), pp. 2417–2422.

  7. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, S.J. Pearton, F. Ren, L. Liu, J.W. Johnson, W. Lim, N.G. Kolin, S.S. Veryovkin, and V.S. Ermakov, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30, 061207 (2012).

    Google Scholar 

  8. O. Aktas, A. Kuliev, V. Kumar, R. Schwindt, S. Toshkov, D. Costescu, J. Stubbins, and I. Adesida, Solid State Electron. 48, 471 (2004).

    CAS  Google Scholar 

  9. G.A. Umana-Membreno, J.M. Dell, G. Parish, B.D. Nener, L. Faraone, and U.K. Mishra, IEEE Trans. Electron Devices 50, 2326 (2003).

    CAS  Google Scholar 

  10. C.W. Wang, B.S. Soong, J.Y. Chen, C.L. Chen, and Y.K. Su, J. Appl. Phys. 88, 6355 (2000).

    CAS  Google Scholar 

  11. S. Jha, E.V. Jelenković, M.M. Pejović, G.S. Ristić, M. Pejović, K.Y. Tong, C. Surya, I. Bello, and W.J. Zhang, Microelectron. Eng. 86, 37 (2009).

    CAS  Google Scholar 

  12. C. Schwarz, A. Yadav, M. Shatkhin, E. Flitsiyan, L. Chernyak, V. Kasiyan, L. Liu, Y.Y. Xi, F. Ren, S.J. Pearton, C.F. Lo, J.W. Johnson, and E. Danilova, Appl. Phys. Lett. 102, 062102 (2013).

    Google Scholar 

  13. J. Lee, A. Yadav, M. Antia, V. Zaffino, E. Flitsiyan, L. Chernyak, J. Salzman, B. Meyler, S. Ahn, F. Ren, and S.J. Pearton, Radiat. Eff. Defects Solids 172, 250 (2017).

    CAS  Google Scholar 

  14. A. Yadav, E. Flitsiyan, L. Chernyak, Y.H. Hwang, Y.L. Hsieh, L. Lei, F. Ren, S.J. Pearton, and I. Lubomirsky, Radiat. Eff. Defects Solids 170, 377 (2015).

    CAS  Google Scholar 

  15. H.Y. Kim, J. Kim, L. Liu, C.F. Lo, F. Ren, and S.J. Pearton, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 31, (2013). https://doi.org/10.1116/1.3246405.

  16. Z. Bian, K. Su, J. Zhang, S. Zhao, H. Zhou, W. Zhang, Y. Zhang, T. Zhang, J. Chen, K. Dang, J. Ning, and Y. Hao, J. Phys. D: Appl. Phys. 53, 045103 (2019).

  17. G.A. Umana-Membreno, J.M. Dell, T.P. Hessler, B.D. Nener, G. Parish, L. Faraone, and U.K. Mishra, Appl. Phys. Lett. 80, 4354 (2002).

    CAS  Google Scholar 

  18. S.A. Vitusevich, A.M. Kurakin, R.V. Konakova, A.E. Belyaev, and N. Klein, Appl. Surf. Sci. 255, 784 (2008).

    CAS  Google Scholar 

  19. A.M. Kurakin, S.A. Vitusevich, S.V. Danylyuk, H. Hardtdegen, N. Klein, Z. Bougrioua, B.A. Danilchenko, R.V. Konakova, and A.E. Belyaev, J. Appl. Phys. 103, 083707 (2008).

    Google Scholar 

  20. Y.-H. Hwang, Y.-L. Hsieh, L. Lei, S. Li, F. Ren, S.J. Pearton, A. Yadav, C. Schwarz, M. Shatkhin, L. Wang, E. Flitsiyan, L. Chernyak, A.G. Baca, A.A. Allerman, C.A. Sanchez, and I.I. Kravchenko, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 031203 (2014).

    Google Scholar 

  21. S. Verma, K.C. Praveen, A. Bobby, D. Kanjilal, and I.E.E.E. Trans, Device Mater. Reliab. 14, 721 (2014).

    CAS  Google Scholar 

  22. C. Sharma, N. Modolo, H.H. Chen, Y.Y. Tseng, S.W. Tang, M. Meneghini, G. Meneghesso, E. Zanoni, R. Singh, and T.L. Wu, Microelectron. Reliab. 100–101, 113349 (2019).

    Google Scholar 

  23. C. Sharma, A.K. Visvkarma, R. Laishram, A. Malik, K. Narang, S. Vinayak, and R. Singh, Semicond. Sci. Technol. 34, 065024 (2019).

    CAS  Google Scholar 

  24. A. Malik, C. Sharma, R. Laishram, R.K. Bag, D.S. Rawal, S. Vinayak, and R.K. Sharma, Solid State Electron. 142, 8 (2018).

    CAS  Google Scholar 

  25. D.W. Johnson, R.T.P. Lee, R.J.W. Hill, M.H. Wong, G. Bersuker, E.L. Piner, P.D. Kirsch, H.R. Harris, and I.E.E.E. Trans, Electron Devices 60, 3197 (2013).

    CAS  Google Scholar 

  26. T. Hashizume, J. Kotani, and H. Hasegawa, Appl. Phys. Lett. 84, 4884 (2004).

    CAS  Google Scholar 

  27. H. Zhang, E.J. Miller, and E.T. Yu, J. Appl. Phys. 99, 023703 (2006).

    Google Scholar 

  28. S. Turuvekere, N. Karumuri, A.A. Rahman, A. Bhattacharya, A. Dasgupta, and N. Dasgupta, IEEE Trans. Electron Devices 60, 3157 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the “Center for the Semiconductor Technology Research” from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. Also supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST- 109-2634-F-009-029 and in part by the Young Scholar Fellowship Program, under Grant MOST MOST-109-2636-E-009-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Li Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, C., Singh, R., Chao, DS. et al. Effects of γ-Ray Irradiation on AlGaN/GaN Heterostructures and High Electron Mobility Transistor Devices. J. Electron. Mater. 49, 6789–6797 (2020). https://doi.org/10.1007/s11664-020-08318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08318-0

Keywords

Navigation