Skip to main content
Log in

Proton-Induced Conductivity Enhancement in AlGaN/GaN HEMT Devices

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the influence of proton irradiation on the AlGaN/GaN high-electron-mobility transistor (HEMT) devices. Unlike previous studies on the degradation behavior upon proton irradiation, we observed improvements in their electrical conductivity and carrier concentration of up to 25% for the optimal condition. As we increased the proton dose, the carrier concentration and the mobility showed a gradual increase and decrease, respectively. From the photoluminescence measurements, we observed a reduction in the near-band-edge peak of GaN (~ 366 nm), which correlate on the observed electrical properties. However, neither the Raman nor the X-ray diffraction analysis showed any changes, implying a negligible influence of protons on the crystal structures. We demonstrated that high-energy proton irradiation could be utilized to modify the transport properties of HEMT devices without damaging their crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda and I. Omura, IEEE Trans. Electron Devices 53, 356 (2006).

    Article  ADS  Google Scholar 

  2. S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys. 86, 1 (1999).

    Article  ADS  Google Scholar 

  3. H. Shin et al., J. Korean Phys. Soc. 63, 1621 (2013).

    Article  ADS  Google Scholar 

  4. S. Y. Jang, S. W. Moon and J. Park, New Physics: Sae Mulli 65, 1 (2015).

    Google Scholar 

  5. I. H. Lee et al., Curr. Appl. Phys. 16, 628 (2016).

    Article  ADS  Google Scholar 

  6. I. H. Lee, Y. H. Kim, Y. I. Chang, J. H. Shin, T. Jang and S. Y. Jang, J. Korean Phys. Soc. 66, 61 (2015).

    Article  ADS  Google Scholar 

  7. H. Tokuda, J. Yamazaki and M. Kuzuhara, J. Appl. Phys. 108, 104509 (2010).

    Article  ADS  Google Scholar 

  8. M. Azize and T. Palacios, J. Appl. Phys. 108 023707 (2010).

    Article  ADS  Google Scholar 

  9. O. Ambacher et al., J. Appl. Phys. 85, 3222 (1999).

    Article  ADS  Google Scholar 

  10. Y. S. Yun et al., Curr. Appl. Phys. 16, 1005 (2016).

    Article  ADS  Google Scholar 

  11. S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. Polyakov and J. Kim, J. Vac. Sci. Technol. A 31 050801 (2013).

    Article  Google Scholar 

  12. A. Y. Polyakov et al., Physica B 376-377, 523 (2006).

    Article  ADS  Google Scholar 

  13. A. P. Karmarkar et al., IEEE Trans. Nucl. Sci. 51, 3801 (2004).

    Article  ADS  Google Scholar 

  14. H. Xinwen et al., IEEE Trans. Nucl. Sci. 51, 293 (2004).

    Article  Google Scholar 

  15. H-Y. Kim et al., J. Cryst. Growth 326, 62 (2011).

    Article  ADS  Google Scholar 

  16. S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou and G. Li, J. Appl. Phys. 91, 3928 (2002).

    Article  ADS  Google Scholar 

  17. S. Dhara et al., Appl. Phys. Lett. 82, 451 (2003).

    Article  ADS  Google Scholar 

  18. A. Ionascut-Nedelcescu, C. Carlone, A. Houdayer, H. J. von Bardeleben, J. L. Cantin and S. Raymond, IEEE Trans. Nucl. Sci. 49, 2733 (2002).

    Article  ADS  Google Scholar 

  19. B. Joo, M. Han, Y. Chang, J. Shin, S. Jang and T. Jang, J. Korean Phys. Soc. 63, 2314 (2013).

    Article  ADS  Google Scholar 

  20. J. H. Shin, Y. Je Jo, K-C. Kim, T. Jang and K. S. Kim, Appl. Phys. Lett. 100, 111908 (2012).

    Article  ADS  Google Scholar 

  21. H. Okada et al., J. Phys.: Conf. Series 352, 012010 (2012).

    Google Scholar 

  22. A. Abderrahmane, P. J. Ko, H. Okada, S. I. Sato, T. Ohshima and A. Sandhu, IEEE Electron Device Lett. 35, 1130 (2014).

    Article  ADS  Google Scholar 

  23. A. Abderrahmane et al., J. Phys.: Conf. Series 433, 012011 (2013).

    Google Scholar 

  24. A. Abderrahmane et al., Appl. Phys. Lett. 102, 193510 (2013).

    Article  ADS  Google Scholar 

  25. D. O. Demchenko, I. C. Diallo and M. A. Reshchikov, Phys. Rev. Lett. 110, 087404 (2013).

    Article  ADS  Google Scholar 

  26. X. He et al., J. Vac. Sci. Technol. B 32, 051207 (2014).

    Article  Google Scholar 

  27. K. Saarinen et al., Phys. Rev. Lett. 79, 3030 (1997).

    Article  ADS  Google Scholar 

  28. J. L. Lyons, A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010).

    Article  ADS  Google Scholar 

  29. M. A. Reshchikov, Appl. Phys. Lett. 88, 202104 (2006).

    Article  ADS  Google Scholar 

  30. L. Liu et al., J. Vac. Sci. Technol. B. 32, 022202 (2014).

    Article  Google Scholar 

  31. L. Ling et al., IEEE Trans. Nucl. Sci. 62, 300 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jun Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, I.H., Lee, C., Choi, B.K. et al. Proton-Induced Conductivity Enhancement in AlGaN/GaN HEMT Devices. J. Korean Phys. Soc. 72, 920–924 (2018). https://doi.org/10.3938/jkps.72.920

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.920

Keywords

Navigation